StableHLO is an operation set for high-level operations (HLO) in machine learning (ML) models. Essentially, it's a portability layer between different ML frameworks and ML compilers: ML frameworks that produce StableHLO programs are compatible with ML compilers that consume StableHLO programs.
Our goal is to simplify and accelerate ML development by creating more interoperability between various ML frameworks (such as TensorFlow, JAX and PyTorch) and ML compilers (such as XLA and IREE).
StableHLO is based on the MHLO dialect and enhances it with additional functionality, including serialization and versioning. We use MLIR bytecode as serialization format and provide backward and forward compatibility guarantees. This ensures compatibility between frameworks and compilers, even as StableHLO continues to evolve.
This repository includes the StableHLO specification along with an MLIR-based implementation in C++ and Python, which you can use to define StableHLO programs for consumption by compilers such as XLA and IREE.
Build instructions
See StableHLO on GitHub for build instructions.
Community
Building an amazing portability layer between ML frameworks and ML compilers requires collaboration across the whole ML industry, so we're happy to have your help on the StableHLO project.
We're using GitHub issues / pull requests to organize development and
openxla-discuss
to have longer discussions. We also have a #stablehlo
channel on the OpenXLA Discord server.