-chlo-legalize-to-stablehlo

Legalizes from CHLO ops flow to StableHLO and Shape ops

-shape-legalize-to-stablehlo

Legalize shape-related ops to StableHLO.

An experimental pass that legalizes shape-related ops to StableHLO ops.

Bringing shape and data computations together via an optional pass will make it possible for the StableHLO ecosystem to potentially leverage the compilation pipelines that use StableHLO operations to model dynamism.

-stablehlo-aggressive-folder

Folds StableHLO operations

Options

-fold-float : Allow for potentially lossy computations using float type.

-stablehlo-aggressive-simplification

Canonicalizes StableHLO operations

-stablehlo-canonicalize-dynamism

Canonicalizes dynamic StableHLO ops into static ops.

Replaces dynamic StableHLO ops like DynamicReshapeOp with the corresponding static counterparts like DynamicReshapeOp to ReshapeOp or DynamicBroadcastInDim to BroadcastInDim if all the dynamic elements of = these ops are actually constants.

  %c = stablehlo.constant dense<16> : tensor<1xi32>
  %0 = stablehlo.dynamic_broadcast_in_dim %cst, %c, dims = [] : (tensor<f32>, tensor<1xi32>) -> tensor<16xf32>

  ==>

  %0 = stablehlo.broadcast_in_dim %cst, dims = [] : (tensor<f32>) -> tensor<16xf32>

-stablehlo-compatibility-expander

Compatibility expander for StableHLO operations.

StableHLO ops gets updates or new op is introduced in the latest versions. This opt-in pass expands backward compatibility with older StableHLO versions by decomposing newer StableHLO operations into equivalent operations supported by those older versions.

Why is this an opt-in pass?

Occasionally, StableHLO op enhancements are used to greatly simplify the handling of certain common patterns in the OpenXLA ecosystem. This includes things like TanOp, which has high framework and compiler support, as well as gather/scatter batching dimensions, which can be represented using slices, but makes sharding much more difficult. For this category of new features, we do not offer automatic downgrade, since it may throw away important information used in subsequent optimizations. This pass can be used to expand these ops based on a target version to maximize compatibility at the expense of potentially less optimal compilation.

func.func @tan_op_non_complex(%arg0: tensor<4xf64>) -> tensor<4xf64> {
  %1 = stablehlo.tan %arg0 : tensor<4xf64>
  func.return %1 : tensor<4xf64>
}

==>

func.func @tan_op_non_complex(%arg0: tensor<4xf64>) -> tensor<4xf64> {
  %0 = stablehlo.sine %arg0 : tensor<4xf64>
  %1 = stablehlo.cosine %arg0 : tensor<4xf64>
  %2 = stablehlo.divide %0, %1 : tensor<4xf64>
  return %2 : tensor<4xf64>
}

Options

-target : The target version. Must be a version of the form #.#.#.

-stablehlo-convert-to-signless

Pass to transform the IR to be on signless integers.

-stablehlo-legalize-composite-to-call

Replaces composite ops with a call to their decomposition.

Replaces composite ops with a call to their decomposition, e.g. the below:

stablehlo.composite "my_namespace.my_op" %arg0, %arg1 {
  decomposition = @bar,
  version = 1,
  composite_attributes = {
    "my_attribute": "my_value"
  }
}

Will become:

func.call @bar(%arg0, %arg1)

A subset of composites can be excepted from this transformation using the "except" flag, e.g.:

stablehlo-opt --stablehlo-legalize-composite-to-call=except='foo.baz,foo.qux'

Options

-except : Names of composites that should not be replaced with calls.

-stablehlo-legalize-deprecated-ops

Legalize deprecated ops to well-supported ops.

The StableHLO v1.0 Opset Deprecations RFC (#2283) proposes to remove several redundant ops. This pass helps to evaluate the impact of these op removals in various compilation pipelines by legalizing them to their long-term supported counterparts.

Options

-fail-on-unused : Fail on (mostly) unused ops that are deprecated without any fallback.

-stablehlo-legalize-qdq-to-quantized-op

Fuse (de-quantize, floating-point operation and quantize) pattern into StableHLO quantized operation

Fuse (de-quantize, floating-point operation and quantize) pattern into StableHLO quantized operation Note: The pass does not delete any preexisting op. For example, the following program

func.func @add(%arg0: tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>> {
  %0 = stablehlo.uniform_dequantize %arg0 : (tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>) -> tensor<16x16xf32>
  %1 = stablehlo.abs %0 : tensor<16x16xf32>
  %2 = stablehlo.uniform_quantize %1 : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
  func.return %2 : tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
}

Will become:

func.func @add(%arg0: tensor<16x16x!quant.uniform<u8:f32, 3.400000e+01:16>>) -> tensor<16x16x!quant.uniform<u8:f32, 3.400000e+01:16>> {
  %0 = stablehlo.uniform_dequantize %arg0 : (tensor<16x16x!quant.uniform<u8:f32, 3.400000e+01:16>>) -> tensor<16x16xf32>
  %1 = stablehlo.abs %0 : tensor<16x16xf32>
  %2 = stablehlo.abs %arg0 : tensor<16x16x!quant.uniform<u8:f32, 3.400000e+01:16>>
  %3 = stablehlo.uniform_quantize %1 : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<u8:f32, 3.400000e+01:16>>
  return %2 : tensor<16x16x!quant.uniform<u8:f32, 3.400000e+01:16>>
}

-stablehlo-legalize-quant-to-math

Convert from StableHLO quantized ops to StableHLO primitive math ops.

Convert StableHLO programs using UniformQuantized types to semantically equivalent integer math operations.

func.func @add(%arg0: tensor<!quant.uniform<i8:f32,1.0:0>>, %arg1: tensor<!quant.uniform<i8:f32,2.0:1>>) ->  tensor<!quant.uniform<i8:f32,3.0:2>> {
  %0 = "stablehlo.add"(%arg0, %arg1) : (tensor<!quant.uniform<i8:f32,1.0:0>>, tensor<!quant.uniform<i8:f32,2.0:1>>) -> tensor<!quant.uniform<i8:f32,3.0:2>>
  func.return %0 : tensor<!quant.uniform<i8:f32,3.0:2>>
}

Will become:

func.func @add(%arg0: tensor<i8>, %arg1: tensor<i8>) -> tensor<i8> {
  %0 = stablehlo.convert %arg0 : (tensor<i8>) -> tensor<f32>
  %cst = stablehlo.constant dense<0.333333343> : tensor<f32>
  %1 = chlo.broadcast_multiply %0, %cst : (tensor<f32>, tensor<f32>) -> tensor<f32>
  %cst_0 = stablehlo.constant dense<2.000000e+00> : tensor<f32>
  %2 = chlo.broadcast_add %1, %cst_0 : (tensor<f32>, tensor<f32>) -> tensor<f32>
  %3 = stablehlo.round_nearest_even %2 : tensor<f32>
  %4 = stablehlo.convert %3 : (tensor<f32>) -> tensor<i32>
  %5 = stablehlo.convert %arg1 : (tensor<i8>) -> tensor<f32>
  %cst_1 = stablehlo.constant dense<0.666666686> : tensor<f32>
  %6 = chlo.broadcast_multiply %5, %cst_1 : (tensor<f32>, tensor<f32>) -> tensor<f32>
  %cst_2 = stablehlo.constant dense<1.33333337> : tensor<f32>
  %7 = chlo.broadcast_add %6, %cst_2 : (tensor<f32>, tensor<f32>) -> tensor<f32>
  %8 = stablehlo.round_nearest_even %7 : tensor<f32>
  %9 = stablehlo.convert %8 : (tensor<f32>) -> tensor<i32>
  %c = stablehlo.constant dense<2> : tensor<i32>
  %10 = chlo.broadcast_add %4, %9 : (tensor<i32>, tensor<i32>) -> tensor<i32>
  %11 = chlo.broadcast_subtract %10, %c : (tensor<i32>, tensor<i32>) -> tensor<i32>
  %c_3 = stablehlo.constant dense<-128> : tensor<i32>
  %c_4 = stablehlo.constant dense<127> : tensor<i32>
  %12 = stablehlo.clamp %c_3, %11, %c_4 : tensor<i32>
  %13 = stablehlo.convert %12 : (tensor<i32>) -> tensor<i8>
  return %13 : tensor<i8>
}

-stablehlo-legalize-quantized-op-to-qdq

Decompose quantized StableHLO operation to (de-quantize, floating-point operation and quantize) pattern.

Decompose StableHLO quantized programs using uniform quantize/dequantize operations. For example, the following program

func.func @add(%arg0: tensor<!quant.uniform<i8:f32,1.0:0>>, %arg1: tensor<!quant.uniform<i8:f32,2.0:1>>) ->  tensor<!quant.uniform<i8:f32,3.0:2>> {
  %0 = "stablehlo.add"(%arg0, %arg1) : (tensor<!quant.uniform<i8:f32,1.0:0>>, tensor<!quant.uniform<i8:f32,2.0:1>>) -> tensor<!quant.uniform<i8:f32,3.0:2>>
  func.return %0 : tensor<!quant.uniform<i8:f32,3.0:2>>
}

Will become:

func.func @add(%arg0: tensor<!quant.uniform<i8:f32, 1.000000e+00>>, %arg1: tensor<!quant.uniform<i8:f32, 2.000000e+00:1>>) -> tensor<!quant.uniform<i8:f32, 3.000000e+00:2>> {
  %0 = stablehlo.uniform_dequantize %arg0 : (tensor<!quant.uniform<i8:f32, 1.000000e+00>>) -> tensor<f32>
  %1 = stablehlo.uniform_dequantize %arg1 : (tensor<!quant.uniform<i8:f32, 2.000000e+00:1>>) -> tensor<f32>
  %2 = stablehlo.add %0, %1 : tensor<f32>
  %3 = stablehlo.uniform_quantize %2 : (tensor<f32>) -> tensor<!quant.uniform<i8:f32, 3.000000e+00:2>>
  return %3 : tensor<!quant.uniform<i8:f32, 3.000000e+00:2>>
}

-stablehlo-legalize-to-vhlo

Legalize StableHLO to VHLO.

-stablehlo-refine-arguments

Refines the argument shapes of the main function.

Modifies the arguments of the main function using the input type signature. Wraps arguments in custom_call @stablehlo.shape_refinement_operand_wrapper to keep the IR valid before shape refinement is run.

func.func public @main(%arg0: tensor<?xf32>) -> tensor<?xf32> {
  ...
}

==>

func.func public @main(%arg0: tensor<16xf32>) -> tensor<?xf32> {
  %c = stablehlo.constant dense<16> : tensor<1xi64>
  %0 = stablehlo.custom_call @stablehlo.shape_refinement_operand_wrapper(%arg0, %c) {...}
    : (tensor<16xf32>, tensor<1xi64>) -> tensor<?xf32>
  ...

The refinedTypesOption can be used to specify a list of refined types. This can be specified in MLIR with --types='tensor<...>,tensor<...>', or passed to the pass create method. The refinement type list must specify the type of every argument to the main method being refined.

Options

-types : The new types to be used for the main function's arguments, specified as an MLIR TypeRange 'tensor<1x2xf32>, ...'

-stablehlo-refine-shapes

Refines shapes across a StableHLO program.

Walks through a StableHLO program refining shapes within ops.

The flagship use case for this pass is specializing dynamically-shaped programs to static shapes. If a dynamically-shaped StableHLO program has the right structure, then updating its argument types from dynamic shapes to static shapes and running this pass will propagate static shapes across the program.

This pass removes custom_call @shape_refinement_operand_wrapper by replacing uses of the result with the operand directly, and propagates static shapes throughout the program.

%c = stablehlo.constant dense<16> : tensor<1xi64>
%0 = stablehlo.custom_call @stablehlo.shape_refinement_operand_wrapper(%arg0, %c) {...}
    : (tensor<16xf32>, tensor<1xi64>) -> tensor<?xf32>
%1 = stablehlo.add %0, %0 : tensor<?xf32>

==>

%1 = stablehlo.add %arg0, %arg0 : tensor<16xf32>

-vhlo-legalize-to-stablehlo

Legalize VHLO to StableHLO.

-vhlo-to-version

Convert between versions of VHLO.

Options

-target : The target version. Must be a version of the form #.#.# .