-stablehlo-aggressive-folder
Folds StableHLO অপারেশন
অপশন
-fold-float : Allow for potentially lossy computations using float type.
-stablehlo-aggressive-simplification
StableHLO অপারেশনকে ক্যানোনিকালাইজ করে
গ্রাফ সরলীকরণ সম্পাদন করে, সহ:
- add(cst, X) -> add(X, cst)
- add(X, 0) -> X
- and(cst, X) -> and(X, cst)
- and(X, 0) -> 0
- and(X, 1) -> X
- broadcast_in_dim(broadcast_in_dim(X, [dimsA...]), [dimsB...]) -> broadcast_in_dim(X, merge(dimsA, dimsB))
- broadcast_in_dim(X, [dims...]) -> transpose(X, [dims...]) [if same numel & rank]
- broadcast_in_dim(X, [iota...]) -> X
- broadcast_in_dim(X, [sorted...]) -> reshape(X, [sorted...]) [if same numel]
- compare(cst, X, comparator) -> compare(X, cst, inv(comparator))
- compare(X, X, [EQ,GE,LE]) -> true
- compare(X, X, [NE,GT,LT]) -> false
- complex(real(X), imag(X))) -> X
- concatenate(concatenate(X, Y), Z) -> concatenate(X, Y, Z)
- concatenate(X) -> X
- concatenate(X, Y, []) -> concatenate(X, Y)
- convert(X, [X.type]) -> X
- dynamic_broadcast_in_dim(dynamic_broadcast_in_dim(X, _, [dimsA...]), shape, [dimsB...]) -> dynamic_broadcast_in_dim(X, shape, merge(dimsA, dimsB))
- dynamic_broadcast_in_dim(dynamic_reshape(X, shape), shape) -> dynamic_reshape(X, shape)
- dynamic_broadcast_in_dim(X, _, _, [all_nonexpanding...]) -> convert(X)
- dynamic_broadcast_in_dim(X, shape_of(X)) -> X
- dynamic_gather(x, constant(slice_sizes)) -> gather(x, slice_sizes)
- dynamic_iota(shape, dim) ->
- dynamic_pad(X, low, high, interior) -> pad(X, low, high, interior)
- dynamic_reshape(dynamic_reshape(X, _), shape)) -> dynamic_reshape(X, shape)
- dynamic_reshape(op(dynamic_reshape(X, shape)), shape)
- dynamic_slice(X, begin, slice_sizes) -> slice(X, begin, slice_sizes)
- dynamic_update_slice(X, update, start_indices : zero)) -> update
- dynamic_update_slice(X, update : zero_extent)) -> X
- gather(X, cst_start_indices) -> slice(X, slice_start, slice_end)
- get_dimension_size(X, i) -> X.shape[i]
- get_tuple_element(tuple(X_0, X_1, ...), i) -> X_i
- imag(complex(R,I)) -> I
- iota(dim) : multi_rank
- iota(dim) : type -> constant(0) : type [if type[dim] == 1]
- max(cst, X) -> max(X, cst)
- minimum(cst, X) -> minimum(X, cst)
- multiply(cst, X) -> multiply(X, cst)
- multiply(X, 0i) -> 0i
- multiply(X, 1i) -> X
- op(X : zero_extent_tensor) -> constant([])
- or(cst, X) -> or(X, cst)
- or(X, 0) -> X
- or(X, 1) -> 1
- pad(empty_tensor, _) -> broadcast_in_dim(empty_tensor, _)
- real(complex(R,I)) -> X
- real_dynamic_slice(X, start, limit, strides)
- real_dynamic_slice(X, start, limit, strides)
- reduce[A](_, _, fn:return A) -> A...
- reduce(empty_0, empty_1, ...) -> [broadcast_in_dim(empty_i)...]
- reduce(in_1, in_2, _, _) -> reduce(in_1, _, _) [if unused(in_2)]
- reduce(X..., dims=[], add) -> X...
- reshape(reshape(X, _), [shape]) -> reshape(X, [shape])
- reshape(X, [X.shape]) -> X
- select(broadcast(not(p)), t, f) => select(broadcast(p), f, t)
- select(not(p), t, f) => select(p, f, t)
- shape_of(dynamic_reshape(X, shape)) -> shape
- slice(concat(X,Y,Z,...),...) -> concat(slice(X),slice(Y),slice(Z))
- slice(X, [A:A], [B:B], ...) -> X
- sort(X) -> sort(X, dim = N) [when dim can be inferred]
- sort(X,Y) -> sort(X) [if Y unused and unused in comparator]
- subtract(X, 0) -> X
- subtract(X, X) -> 0
- transpose(X, [iota...]) -> X
- transpose(X, [no_mem_layout_change...]) -> reshape(X)
- tuple(get_tuple_element(X, 0), get_tuple_element(X, 1), ...) -> X
- while -> while (loop invariants as implicit captures)
- xor(cst, X) -> xor(X, cst)
- (+more)
এই তালিকাটি কোড মন্তব্য থেকে টেনে নেওয়া হয়েছে তাই সম্পূর্ণরূপে সম্পূর্ণ নয়, কিন্তু আজ পাসের উচ্চ কভারেজ রয়েছে।
-stablehlo-target-independent-optimization
ক্যানোনিকালাইজার, ফোল্ডার এবং অন্যান্য লক্ষ্য-স্বাধীন অপ্টিমাইজেশান চালায়।
StablehloAggressiveSimplificationPass এবং StablehloAggressiveFolderPass থেকে প্যাটার্নগুলি একসাথে ব্যবহার করে, একই প্যাটার্ন সেটে ক্যানোনিকালাইজেশন এবং ভাঁজ করার অনুমতি দেয়, প্রায়শই ভাল ফলাফলের দিকে পরিচালিত করে।
ব্যবহারকারীদের অন্যদের সরাসরি কল করার চেয়ে এই পাসটি পছন্দ করা উচিত।