Contexto
O PJRT é a API de dispositivo uniforme que queremos adicionar ao ecossistema de ML. A visão de longo prazo é que:
- Os frameworks (JAX, TF etc.) vão chamar o PJRT, que tem implementações específicas do dispositivo que são opacas para os frameworks.
- Cada dispositivo se concentra na implementação das APIs PJRT e pode ser opaco para os frameworks.
A PJRT oferece APIs C e C++. Não há problema em conectar em qualquer camada. A API C++ usa classes para abstrair alguns conceitos, mas também tem vínculos mais fortes com tipos de dados XLA. Esta página se concentra na API C++.
Componentes do PJRT
PjRtClient
Referência completa em pjrt_client.h > PjRtClient.
Os clientes gerenciam toda a comunicação entre o dispositivo e a estrutura, e encapsulam todo o estado usado na comunicação. Eles têm um conjunto genérico de APIs para interagir com um plug-in PJRT e são proprietários dos dispositivos e espaços de memória de um determinado plug-in.
PjRtDevice
Referências completas em pjrt_client.h > PjRtDevice e pjrt_device_description.h
Uma classe de dispositivo é usada para descrever um único dispositivo. Um dispositivo tem uma descrição para ajudar a identificar o tipo (hash exclusivo para identificar GPU/CPU/xPU) e a localização em uma grade de dispositivos local e globalmente.
Os dispositivos também conhecem os espaços de memória associados e o cliente a que pertencem.
Um dispositivo não necessariamente conhece os buffers de dados reais associados a ele, mas pode descobrir isso analisando os espaços de memória associados.
PjRtMemorySpace
Referência completa em pjrt_client.h > PjRtMemorySpace.
Os espaços de memória podem ser usados para descrever um local da memória. Eles podem ser desafixados e ficar em qualquer lugar, mas precisam estar acessíveis em um dispositivo, ou podem ser fixados e precisam ficar em um dispositivo específico.
Os espaços de memória conhecem os buffers de dados associados e os dispositivos (plural) a que um espaço de memória está associado, bem como o cliente de que ele faz parte.
PjRtBuffer
Referência completa em pjrt_client.h > PjRtBuffer.
Um buffer armazena dados em um dispositivo em algum formato que seja fácil de trabalhar
no plug-in, como um atributo de elementos MLIR ou um formato de tensor proprietário.
Um framework pode tentar enviar dados para um dispositivo na forma de um xla::Literal,
ou seja, para um argumento de entrada do módulo, que precisa ser clonado (ou emprestado) para
a memória do dispositivo. Quando um buffer não é mais necessário, o método Delete é
invocado pelo framework para limpar.
Um buffer sabe o espaço de memória de que faz parte e, de maneira transitiva, pode descobrir quais dispositivos podem acessá-lo, mas não necessariamente conhece os dispositivos.
Para se comunicar com frameworks, os buffers sabem como converter para e de um tipo
xla::Literal:
// Literal to Buffer
absl::StatusOr<std::unique_ptr<PjRtBuffer>> BufferFromHostBuffer(...) {...}
// Buffer to Literal
xla::Future<> ToLiteral(xla::MutableLiteralBase* literal) override {...}
As APIs para criar um buffer têm semântica de buffer, que ajuda a determinar se os dados literais do buffer do host podem ser compartilhados, copiados ou alterados.
Por fim, um buffer pode precisar durar mais do que o escopo da execução se for atribuído a uma variável na camada de framework x = jit(foo)(10). Nesses casos, os buffers permitem criar referências externas que fornecem um ponteiro temporariamente pertencente aos dados mantidos pelo buffer, além de metadados (dtype / tamanhos de dimensão) para interpretar os dados subjacentes.
PjRtCompiler
Referência completa em pjrt_compiler.h > PjRtCompiler.
A classe PjRtCompiler fornece detalhes de implementação úteis para back-ends XLA, mas não é necessária para um plug-in implementar. Em teoria, a responsabilidade de um PjRtCompiler ou do método PjRtClient::Compile é receber um módulo de entrada e retornar um PjRtLoadedExecutable.
PjRtExecutable / PjRtLoadedExecutable
Referência completa em pjrt_executable.h > PjRtExecutable,
e pjrt_client.h > PjRtLoadedExecutable.
Um PjRtExecutable sabe como pegar um artefato compilado e opções de execução
e serializar/desserializar para que um executável possa ser armazenado e carregado conforme
necessário.
O PjRtLoadedExecutable é o executável compilado na memória pronto para receber argumentos de entrada e ser executado. Ele é uma subclasse de PjRtExecutable.
Os executáveis são interligados por um dos métodos Execute do cliente:
// Execute on addressable devices
absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>>
Execute(absl::Span<const std::vector<PjRtBuffer*>> argument_handles, ...) {...}
// Execute assigned replica/partition on the specified device
absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>>
ExecuteSharded(absl::Span<PjRtBuffer* const> argument_handles,
PjRtDevice* device, ...) {...}
// Execute on specified device, single replica / partition
absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>>
ExecutePortable(absl::Span<PjRtBuffer* const> argument_handles,
PjRtDevice* device, ...) {...}
Antes de chamar Execute, o framework vai transferir todos os dados necessários para
PjRtBuffers pertencente ao cliente em execução, mas retornado para o framework
referenciar. Esses buffers são fornecidos como argumentos para o método Execute.
Conceitos do PJRT
Futuros e cálculos assíncronos
Se alguma parte de um plug-in for implementada de forma assíncrona, ela precisa implementar futuros corretamente.
Considere o seguinte programa:
@jax.jit
def foo(x): return x + 1
x = foo(1)
# [...] other logic not using `x`
print(x + 1)
Um plug-in assíncrono pode enfileirar a computação x e retornar imediatamente um buffer que ainda não está pronto para ser lido, mas a execução vai preenchê-lo. A execução pode continuar enfileirando as computações necessárias após x, que não exigem x, incluindo a execução em outros dispositivos PJRT. Quando o valor de
x for necessário, a execução será bloqueada até que o buffer se declare pronto usando
o futuro retornado por GetReadyFuture.
As futuras podem ser úteis para determinar quando um objeto fica disponível, incluindo dispositivos e buffers.
Conceitos avançados
Estender além da implementação das APIs básicas vai expandir os recursos do JAX que podem ser usados por um plug-in. Todos esses recursos são opcionais, já que um fluxo de trabalho típico de JIT e execução funciona sem eles. No entanto, para um pipeline de qualidade de produção, é recomendável pensar no grau de suporte para qualquer um desses recursos compatíveis com as APIs PJRT:
- Espaços de memória
- Layouts personalizados
- Operações de comunicação, como envio/recebimento
- Descarregamento do host
- Fragmentação
Comunicação típica entre framework e dispositivo do PJRT
Exemplo de registro
A seguir, um registro dos métodos chamados para carregar o plug-in PJRT e
executar y = jax.jit(lambda x: jnp.power(x, jnp.int32(2)))(1). Neste caso, registramos o JAX interagindo com o plug-in PJRT de referência do StableHLO.
Exemplo de registro
////////////////////////////////// // Load the plugin ////////////////////////////////// I client_cpp_pjrt.cc:55] StablehloReferencePjrtClient(0x23bac400) I device.cc:53] StablehloReferenceDeviceDescription(0x23bac4f8) I device.cc:104] StablehloReferenceDevice(0x23bac4e0) I device.cc:123] client(0x23bac4e0) I device.cc:123] client(0x23bac4e0) I client_cpp_pjrt.cc:71] process_index(0x23bac400) I client_cpp_pjrt.cc:67] platform_name(0x23bac400) I device.cc:143] AttachDefaultMemorySpace(0x23bac4e0) I client_cpp_pjrt.cc:67] platform_name(0x23bac400) I client_cpp_pjrt.cc:86] devices(0x23bac400) I client_cpp_pjrt.cc:81] addressable_device_count(0x23bac400) I device.cc:168] description(0x23bac4e0) I device.cc:168] description(0x23bac4e0) I device.cc:86] Attributes(0x23bac4f8) I device.cc:128] IsAddressable(0x23bac4e0) I device.cc:168] description(0x23bac4e0) I device.cc:61] process_index(0x23bac4f8) I device.cc:123] client(0x23bac4e0) I client_cpp_pjrt.cc:71] process_index(0x23bac400) I client_cpp_pjrt.cc:81] addressable_device_count(0x23bac400) I client_cpp_pjrt.cc:95] memory_spaces(0x23bac400) I device.cc:128] IsAddressable(0x23bac4e0) I device.cc:168] description(0x23bac4e0) I device.cc:61] process_index(0x23bac4f8) I device.cc:123] client(0x23bac4e0) I client_cpp_pjrt.cc:71] process_index(0x23bac400) I device.cc:148] memory_spaces(0x23bac4e0) Creating PJRT Client from client I client_cpp_pjrt.cc:108] platform_version(0x23bac400) I client_cpp_pjrt.cc:67] platform_name(0x23bac400) I device.cc:57] id(0x23bac4f8) I device.cc:70] device_kind(0x23bac4f8) I device.cc:70] device_kind(0x23bac4f8) I device.cc:80] ToString(0x23bac4f8) I device.cc:80] ToString(0x23bac4f8) I device.cc:75] DebugString(0x23bac4f8) I device.cc:75] DebugString(0x23bac4f8) I device.cc:61] process_index(0x23bac4f8) I device.cc:128] IsAddressable(0x23bac4e0) I device.cc:168] description(0x23bac4e0) I device.cc:61] process_index(0x23bac4f8) I device.cc:123] client(0x23bac4e0) I client_cpp_pjrt.cc:71] process_index(0x23bac400) I device.cc:153] default_memory_space(0x23bac4e0) I client_cpp_pjrt.cc:71] process_index(0x23bac400) ////////////////////////////////// // RUN: `y = jax.jit(lambda x: jnp.power(x, jnp.int32(2)))(1)` ////////////////////////////////// I executable.cc:309] num_partitions(0x240bab70) I executable.cc:305] num_replicas(0x240bab70) I executable.cc:309] num_partitions(0x240bab70) I client_cpp_pjrt.cc:233] BufferFromHostBuffer(0x23bac400) I buffer.cc:285] CreateMlirBufferFromLiteral I buffer.cc:98] CreateFromLiteral I buffer.cc:99] CreateFromLiteral: s32[] 2 I buffer.cc:64] MlirPjrtBuffer(0x240bb050) I buffer.cc:102] CreateFromLiteral -> 0x240bb050 I buffer.cc:158] device(0x240bb050) I buffer.cc:154] memory_space(0x240bb050) I buffer.cc:154] memory_space(0x240bb050) I executable.cc:328] GetHloModules(0x240bab70) I executable.cc:240] Execute(0x240bab70) I executable.cc:197] ExecuteWithReferenceInterpreter(0x240bab70) I buffer.cc:303] GetAttributeFromBuffer I buffer.cc:229] IsDeleted(0x240bb050) I buffer.cc:311] GetAttributeFromBuffer(0x240bb050) -> dense<2> : tensor<i32> I executable.cc:205] EvalModule: module @jit attributes {mhlo.num_partitions = 1 : i32, mhlo.num_replicas = 1 : i32} { func.func public @main(%arg0: tensor<i32> {mhlo.layout_mode = "default"}) -> (tensor<i32> {jax.result_info = "", mhlo.layout_mode = "default"}) { // ... return %3 : tensor<i32> } } I executable.cc:206] Inputs: [dense<2> : tensor<i32>] I executable.cc:213] Results: [dense<2> : tensor<i32>] I device.cc:153] default_memory_space(0x23bac4e0) I buffer.cc:291] CreateMlirBufferFromAttribute I buffer.cc:116] CreateFromAttribute I buffer.cc:64] MlirPjrtBuffer(0x22cea630) I buffer.cc:122] CreateFromAttribute(dense<2> : tensor<i32>) -> 0x22cea630 ////////////////////////////////// // RUN: `print(y)` ////////////////////////////////// I buffer.cc:263] GetReadyFuture(0x22cea630) I buffer.cc:264] GetReadyFuture(0x22cea630) I buffer.cc:154] memory_space(0x22cea630) I buffer.cc:154] memory_space(0x22cea630) I buffer.cc:158] device(0x22cea630) I buffer.cc:158] device(0x22cea630) I buffer.cc:154] memory_space(0x22cea630) I buffer.cc:154] memory_space(0x22cea630) I buffer.cc:229] IsDeleted(0x22cea630) I buffer.cc:129] on_device_shape(0x22cea630) I buffer.cc:129] on_device_shape(0x22cea630) I buffer.cc:129] on_device_shape(0x22cea630) I buffer.cc:158] device(0x22cea630) I buffer.cc:154] memory_space(0x22cea630) I buffer.cc:154] memory_space(0x22cea630) I client_cpp_pjrt.cc:71] process_index(0x23bac400) I buffer.cc:229] IsDeleted(0x22cea630) I buffer.cc:129] on_device_shape(0x22cea630) I buffer.cc:129] on_device_shape(0x22cea630) I buffer.cc:269] IsOnCpu(0x22cea630) # Returns true, allows external references. I buffer.cc:129] on_device_shape(0x22cea630) I buffer.cc:129] on_device_shape(0x22cea630) I buffer.cc:129] on_device_shape(0x22cea630) I buffer.cc:129] on_device_shape(0x22cea630) I buffer.cc:129] on_device_shape(0x22cea630) I buffer.cc:168] AcquireExternalReference(0x22cea630) I buffer.cc:73] MlirClonedExternalReference(0x2404d560) I buffer.cc:303] GetAttributeFromBuffer I buffer.cc:229] IsDeleted(0x22cea630) I buffer.cc:311] GetAttributeFromBuffer(0x22cea630) -> dense<2> : tensor<i32> I buffer.cc:291] CreateMlirBufferFromAttribute I buffer.cc:116] CreateFromAttribute I buffer.cc:64] MlirPjrtBuffer(0x240bb050) I buffer.cc:122] CreateFromAttribute(dense<2> : tensor<i32>) -> 0x240bb050 I buffer.cc:168] AcquireExternalReference(0x22cea630) I buffer.cc:73] MlirClonedExternalReference(0x240b6010) I buffer.cc:303] GetAttributeFromBuffer I buffer.cc:229] IsDeleted(0x22cea630) I buffer.cc:311] GetAttributeFromBuffer(0x22cea630) -> dense<2> : tensor<i32> I buffer.cc:291] CreateMlirBufferFromAttribute I buffer.cc:116] CreateFromAttribute I buffer.cc:64] MlirPjrtBuffer(0x23b2db60) I buffer.cc:122] CreateFromAttribute(dense<2> : tensor<i32>) -> 0x23b2db60 I buffer.cc:263] GetReadyFuture(0x22cea630) I buffer.cc:264] GetReadyFuture(0x22cea630)