XLA Custom Calls

This document describes how to write and use XLA custom calls using XLA FFI library. Custom call is a mechanism to describe an external "operation" in the HLO module to the XLA compiler (at compile time), and XLA FFI is a mechanism to register implementation of such operations with XLA (at run time). FFI stands for "foreign function interface" and it is a set of C APIs that define a binary interface (ABI) for XLA to call into external code written in other programming languages. XLA provides header-only bindings for XLA FFI written in C++, which hides all the low level details of underlying C APIs from the end user.

JAX + XLA Custom Calls

See JAX documentation for end to end examples of integrating custom calls and XLA FFI with JAX.

XLA FFI Binding

XLA FFI binding is a compile-time specification of the custom call signature: custom call arguments, attributes and their types, and additional parameters passed via the execution context (i.e., gpu stream for GPU backend). XLA FFI binding can be bound to any C++ callable (function pointer, lambda, etc.) with compatible operator() signature. Constructed handler decodes XLA FFI call frame (defined by the stable C API), type check all parameters, and forward decoded results to the user-defined callback.

XLA FFI binding heavily relies on template metaprogramming to be be able to compile constructed handler to the most efficient machine code. Run time overheads are in order of a couple of nanoseconds for each custom call parameter.

XLA FFI customization points implemented as template specializations, and users can define how to decode their custom types, i.e., it is possible to define custom decoding for user-defined enum class types.

Returning Errors From Custom Calls

Custom call implementations must return xla::ffi::Error value to signal success or error to XLA runtime. It is similar to absl::Status, and has the same set of error codes. We do not use absl::Status because it does not have a stable ABI and it would be unsafe to pass it between dynamically loaded custom call library, and XLA itself.

// Handler that always returns an error.
auto always_error = Ffi::Bind().To(
    []() { return Error(ErrorCode::kInternal, "Oops!"); });

// Handler that always returns a success.
auto always_success = Ffi::Bind().To(
    []() { return Error::Success(); });

Buffer Arguments And Results

XLA uses destination passing style for results: custom calls (or any other XLA operations for that matter) do not allocate memory for results, and instead write into destinations passed by XLA runtime. XLA uses static buffer assignment, and allocates buffers for all values based on their live ranges at compile time.

Results passed to FFI handlers wrapped into a Result<T> template, that has a pointer-like semantics: operator-> gives access to the underlying parameter.

AnyBuffer arguments and results gives access to custom call buffer parameters of any data type. This is useful when custom call has a generic implementation that works for multiple data types, and custom call implementation does run time dispatching based on data type. AnyBuffer gives access to the buffer data type, dimensions, and a pointer to the buffer itself.

%0 = "stablehlo.custom_call"(%arg0) {
  call_target_name = "foo",
  api_version = 4 : i32
} : (tensor<2x2xf32>) -> tensor<2x2xf32>
// Buffers of any rank and data type.
auto handler = Ffi::Bind().Arg<AnyBuffer>().Ret<AnyBuffer>().To(
    [](AnyBuffer arg, Result<AnyBuffer> res) -> Error {
      void* arg_data = arg.untyped_data();
      void* res_data = res->untyped_data();
      return Error::Success();
    });

Constrained Buffer Arguments And Results

Buffer allows to add constraints on the buffer data type and rank, and they will be automatically checked by the handler and return an error to XLA runtime, if run time arguments do not match the FFI handler signature.

// Buffers of any rank and F32 data type.
auto handler = Ffi::Bind().Arg<Buffer<F32>>().Ret<Buffer<F32>>().To(
    [](Buffer<F32> arg, Result<Buffer<F32>> res) -> Error {
      float* arg_data = arg.typed_data();
      float* res_data = res->typed_data();
      return Error::Success();
    });
// Buffers of rank 2 and F32 data type.
auto handler = Ffi::Bind().Arg<BufferR2<F32>>().Ret<BufferR2<F32>>().To(
    [](BufferR2<F32> arg, Result<BufferR2<F32>> res) -> Error {
      float* arg_data = arg.typed_data();
      float* res_data = res->typed_data();
      return Error::Success();
    });

Variadic Arguments And Results

If the number of arguments and result can be different in different instances of a custom call, they can be decoded at run time using RemainingArgs and RemainingRets.

auto handler = Ffi::Bind().RemainingArgs().RemainingRets().To(
    [](RemainingArgs args, RemainingRets results) -> Error {
      ErrorOr<AnyBuffer> arg = args.get<AnyBuffer>(0);
      ErrorOr<Result<AnyBuffer>> res = results.get<AnyBuffer>(0);

      if (!arg.has_value()) {
        return Error(ErrorCode::kInternal, arg.error());
      }

      if (!res.has_value()) {
        return Error(ErrorCode::kInternal, res.error());
      }

      return Error::Success();
    });

Variadic arguments and results can be declared after regular arguments and results, however binding regular arguments and results after variadic one is illegal.

auto handler =
    Ffi::Bind()
        .Arg<AnyBuffer>()
        .RemainingArgs()
        .Ret<AnyBuffer>()
        .RemainingRets()
        .To([](AnyBuffer arg, RemainingArgs args, AnyBuffer ret,
               RemainingRets results) -> Error { return Error::Success(); });

Attributes

XLA FFI supports automatic decoding of mlir::DictionaryAttr passed as a custom_call backend_config into FFI handler arguments.

%0 = "stablehlo.custom_call"(%arg0) {
  call_target_name = "foo",
  backend_config= {
    i32 = 42 : i32,
    str = "string"
  },
  api_version = 4 : i32
} : (tensor<f32>) -> tensor<f32>

In this example custom call has a single buffer argument and two attributes, and XLA FFI can automatically decode them and pass to the user-defined callable.

auto handler = Ffi::Bind()
  .Arg<BufferR0<F32>>()
  .Attr<int32_t>("i32")
  .Attr<std::string_view>("str")
  .To([](BufferR0<F32> buffer, int32_t i32, std::string_view str) {
    return Error::Success();
  });

User-Defined Enum Attributes

XLA FFI can automatically decode integral MLIR attributes into user-defined enums. Enum class must have the same underlying integral type, and decoding has to be explicitly registered with XLA FFI.

%0 = "stablehlo.custom_call"(%arg0) {
  call_target_name = "foo",
  backend_config= {
    command = 0 : i32
  },
  api_version = 4 : i32
} : (tensor<f32>) -> tensor<f32>
enum class Command : int32_t {
  kAdd = 0,
  kMul = 1,
};

XLA_FFI_REGISTER_ENUM_ATTR_DECODING(Command);

auto handler = Ffi::Bind().Attr<Command>("command").To(
    [](Command command) -> Error { return Error::Success(); });

Binding All Custom Call Attributes

It is possible to get access to all custom call attributes as a dictionary and lazily decode only the attributes that are needed at run time.

auto handler = Ffi::Bind().Attrs().To([](Dictionary attrs) -> Error {
  ErrorOr<int32_t> i32 = attrs.get<int32_t>("i32");
  return Error::Success();
});

User-defined Struct Attributes

XLA FFI can decode dictionary attributes into user-defined structs.

%0 = "stablehlo.custom_call"(%arg0) {
  call_target_name = "foo",
  backend_config= {
    range = { lo = 0 : i64, hi = 42 : i64 }
  },
  api_version = 4 : i32
} : (tensor<f32>) -> tensor<f32>

In example above range is an mlir::DictionaryAttr attribute, and instead of accessing dictionary fields by name, it can be automatically decoded as a C++ struct. Decoding has to be explicitly registered with a XLA_FFI_REGISTER_STRUCT_ATTR_DECODING macro (behind the scene it defines a template specialization in ::xla::ffi namespace, thus macro must be added to the global namespace).

struct Range {
  int64_t lo;
  int64_t hi;
};

XLA_FFI_REGISTER_STRUCT_ATTR_DECODING(Range, StructMember<int64_t>("lo"),
                                             StructMember<int64_t>("hi"));

auto handler = Ffi::Bind().Attr<Range>("range").To([](Range range) -> Error{
  return Error::Success();
});

Custom attributes can be loaded from a dictionary, just like any other attribute. In example below, all custom call attributes decoded as a Dictionary, and a range can be accessed by name.

auto handler = Ffi::Bind().Attrs().To([](Dictionary attrs) -> Error {
  ErrorOr<Range> range = attrs.get<Range>("range");
  return Error::Success();
});

Create a custom call on CPU

You can create an HLO instruction that represents a custom call via XLA's client API. For example, the following code uses a custom call to compute A[i] = B[i % 128]+ C[i] on the CPU. (Of course you could – and should! – do this with regular HLO.)

#include "xla/client/xla_builder.h"
#include "xla/service/custom_call_target_registry.h"

void do_it() {
  xla::XlaBuilder b("do_it");
  xla::XlaOp param0 =
      xla::Parameter(&b, 0, xla::ShapeUtil::MakeShape(xla::F32, {128}), "p0");
  xla::XlaOp param1 =
      xla::Parameter(&b, 1, xla::ShapeUtil::MakeShape(xla::F32, {2048}), "p1");
  xla::XlaOp custom_call =
      xla::CustomCall(&b, "do_custom_call", /*operands=*/{param0, param1},
        /*shape=*/xla::ShapeUtil::MakeShape(xla::F32, {2048}),
        /*opaque=*/"", /*has_side_effect=*/false,
        /*output_operand_aliasing=*/{}, /*literal=*/nullptr,
        /*schedule=*/CustomCallSchedule::SCHEDULE_NONE,
        /*api_version=*/CustomCallApiVersion::API_VERSION_TYPED_FFI);
}

// Constrain custom call arguments to rank-1 buffers of F32 data type.
using BufferF32 = xla::ffi::BufferR1<xla::ffi::DataType::F32>;

// Implement a custom call as a C+ function. Note that we can use `Buffer` type
// defined by XLA FFI that gives us access to buffer data type and shape.
xla::ffi::Error do_custom_call(BufferF32 in0, BufferF32 in1,
                               xla::ffi::Result<BufferF32> out) {
  size_t d0 = in0.dimensions[0];
  size_t d1 = in1.dimensions[0];

  // Check that dimensions are compatible.
  assert(out->dimensions[0] == d1 && "unexpected dimensions");

  for (size_t i = 0; i < d1; ++i) {
    out->data[i] = in0.data[i % d0] + in1.data[i];
  }
}

// Explicitly define an XLA FFI handler signature and bind it to the
// `do_custom_call` implementation. XLA FFI handler can automatically infer
// type signature from the custom call function, but it relies on magical
// template metaprogramming an explicit binding provides and extra level of
// type checking and clearly states custom call author intentions.
XLA_FFI_DEFINE_HANDLER(handler, do_custom_call,
                       ffi::Ffi::Bind()
                           .Arg<Buffer>()
                           .Arg<Buffer>()
                           .Ret<Buffer>());

// Registers `handler` with and XLA FFI on a "Host" platform.
XLA_FFI_REGISTER_HANDLER(xla::ffi::GetXlaFfiApi(), "do_custom_call",
                         "Host", handler);

Create a custom call on GPU

The GPU custom call registration with XLA FFI is almost identical, the only difference is that for GPU you need to ask for an underlying platform stream (CUDA or ROCM stream) to be able to launch kernel on device. Here is a CUDA example that does the same computation (A[i] = B[i % 128] + C[i]) as the CPU code above.

void do_it() { /* same implementation as above */ }

__global__ custom_call_kernel(const float* in0, const float* in1, float* out) {
  size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
  out[idx] = in0[idx % 128] + in1[idx];
}

void do_custom_call(CUstream stream, BufferF32 in0, BufferF32 in1,
                    xla::ffi::Result<BufferF32> out) {
  size_t d0 = in0.dimensions[0];
  size_t d1 = in1.dimensions[0];
  size_t d2 = out->dimensions[0];

  assert(d0 == 128 && d1 == 2048 && d2 == 2048 && "unexpected dimensions");

  const int64_t block_dim = 64;
  const int64_t grid_dim = 2048 / block_dim;
  custom_call_kernel<<<grid_dim, block_dim, 0, stream>>>(
    in0.data, in1.data, out->data);
}

XLA_FFI_DEFINE_HANDLER(handler, do_custom_call,
                       ffi::Ffi::Bind()
                           .Ctx<xla::ffi::PlatformStream<CUstream>>()
                           .Arg<BufferF32>()
                           .Arg<BufferF32>()
                           .Ret<BufferF32>());

XLA_FFI_REGISTER_HANDLER(xla::ffi::GetXlaFfiApi(), "do_custom_call",
                         "CUDA", handler);

Notice first that the GPU custom call function is still a function executed on the CPU. The do_custom_call CPU function is responsible for enqueueing work on the GPU. Here it launches a CUDA kernel, but it could also do something else, like call cuBLAS.

Arguments and results also live on the host, and data member contains a pointer to device (i.e. GPU) memory. Buffers passed to custom call handler have the shape of the underlying device buffers, so the custom call can compute kernel launch parameters from them.

Passing tuples to custom calls

Consider the following custom call.

using xla::ShapeUtil;
using xla::F32;
Shape p0_shape = ShapeUtil::MakeTuple({
    ShapeUtil::MakeShape(F32, {32}),
    ShapeUtil::MakeTuple({
        ShapeUtil::MakeShape(F32, {64}),
        ShapeUtil::MakeShape(F32, {128}),
    }),
    ShapeUtil::MakeShape(F32, {256}),
});
xla::XlaOp p0 = xla::Parameter(0, p0_shape, "p0");

Shape out_shape = ShapeUtil::MakeTuple({
  ShapeUtil::MakeShape(F32, {512}),
  ShapeUtil::MakeShape(F32, {1024}),
});
xla::CustomCall(&b, "do_custom_call", /*operands=*/{p0}, out_shape, ...);

On both CPU and GPU, a tuple is represented in memory as an array of pointers. When XLA calls custom calls with tuple arguments or results it flattens them and passes as regular buffer arguments or results.

Tuple outputs as temp buffers

Tuple inputs to custom calls are a convenience, but they aren't strictly necessary. If we didn't support tuple inputs to custom calls, you could always unpack the tuples using get-tuple-element before passing them to the custom call.

On the other hand, tuple outputs do let you do things you couldn't otherwise.

The obvious reason to have tuple outputs is that tuple outputs are how a custom call (or any other XLA op) returns multiple independent arrays.

But less obviously, a tuple output is also a way to give your custom call temp memory. Yes, an output can represent a temp buffer. Consider, an output buffer has the property that the op can write to it, and it can read from it after it's been written to. That's exactly what you want from a temp buffer.

In the example above, suppose we wanted to use the F32[1024] as a temp buffer. Then we'd write the HLO just as above, and we'd simply never read tuple index 1 of the custom call's output.