অপারেশন শব্দার্থবিদ্যা

XlaBuilder ইন্টারফেসে সংজ্ঞায়িত অপারেশনের শব্দার্থবিদ্যা নিচে বর্ণনা করা হল। সাধারণত, এই অপারেশনগুলি xla_data.proto এ RPC ইন্টারফেসে সংজ্ঞায়িত অপারেশনের সাথে এক-এক ম্যাপ করে।

নামকরণ সম্পর্কে একটি নোট: সাধারণীকৃত ডেটা টাইপ XLA হল একটি N-মাত্রিক অ্যারে যা কিছু অভিন্ন ধরণের উপাদান ধারণ করে (যেমন 32-বিট ফ্লোট)। ডকুমেন্টেশন জুড়ে, অ্যারে একটি ইচ্ছাকৃত-মাত্রিক অ্যারে বোঝাতে ব্যবহৃত হয়। সুবিধার জন্য, বিশেষ ক্ষেত্রে আরও নির্দিষ্ট এবং পরিচিত নাম রয়েছে; উদাহরণস্বরূপ, একটি ভেক্টর একটি 1-মাত্রিক অ্যারে এবং একটি ম্যাট্রিক্স একটি 2-মাত্রিক অ্যারে।

শেপস অ্যান্ড লেআউট এবং টাইল্ড লেআউট -এ একটি অপের গঠন সম্পর্কে আরও জানুন।

পেটের পেশী

আরও দেখুন XlaBuilder::Abs

উপাদান অনুসারে abs x -> |x|

Abs(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp ফাংশনের অপারেন্ড

StableHLO তথ্যের জন্য StableHLO - abs দেখুন।

যোগ করুন

আরও দেখুন XlaBuilder::Add

lhs এবং rhs এর উপাদান-ভিত্তিক যোগ সম্পাদন করে।

Add(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
এলএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে
আরএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে

আর্গুমেন্টের আকারগুলি হয় একই রকম অথবা সামঞ্জস্যপূর্ণ হতে হবে। আকারগুলির সামঞ্জস্যপূর্ণ হওয়ার অর্থ কী তা সম্পর্কে সম্প্রচার ডকুমেন্টেশন দেখুন। একটি অপারেশনের ফলাফলের একটি আকৃতি থাকে যা দুটি ইনপুট অ্যারে সম্প্রচারের ফলাফল। এই ভেরিয়েন্টে, বিভিন্ন র‍্যাঙ্কের অ্যারের মধ্যে ক্রিয়াকলাপ সমর্থিত নয় , যদি না অপারেন্ডগুলির মধ্যে একটি স্কেলার হয়।

Add: এর জন্য ভিন্ন-মাত্রিক সম্প্রচার সমর্থন সহ একটি বিকল্প রূপ বিদ্যমান।

Add(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
এলএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে
আরএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে
সম্প্রচার_মাত্রা অ্যারেস্লাইস অপারেন্ড আকৃতির প্রতিটি মাত্রা লক্ষ্য আকৃতিতে কোন মাত্রার সাথে মিলে যায়?

এই ধরণের অপারেশনটি বিভিন্ন র‍্যাঙ্কের অ্যারের মধ্যে গাণিতিক ক্রিয়াকলাপের জন্য ব্যবহার করা উচিত (যেমন একটি ভেক্টরে একটি ম্যাট্রিক্স যোগ করা)।

অতিরিক্ত broadcast_dimensions অপারেন্ড হল পূর্ণসংখ্যার একটি অংশ যা অপারেন্ড সম্প্রচারের জন্য ব্যবহৃত মাত্রা নির্দিষ্ট করে। শব্দার্থবিদ্যা সম্প্রচার পৃষ্ঠায় বিস্তারিতভাবে বর্ণনা করা হয়েছে।

StableHLO তথ্যের জন্য StableHLO - add দেখুন।

নির্ভরতা যোগ করুন

আরও দেখুন HloInstruction::AddDependency

HLO ডাম্পগুলিতে AddDependency প্রদর্শিত হতে পারে, কিন্তু এগুলি শেষ ব্যবহারকারীদের দ্বারা ম্যানুয়ালি তৈরি করার উদ্দেশ্যে নয়।

সর্বোপরি

আরও দেখুন XlaBuilder::AfterAll

AfterAll বিভিন্ন সংখ্যক টোকেন নেয় এবং একটি একক টোকেন তৈরি করে। টোকেন হল আদিম প্রকার যা পার্শ্ব-প্রতিক্রিয়াশীল ক্রিয়াকলাপগুলির মধ্যে থ্রেড করা যেতে পারে যাতে অর্ডার কার্যকর করা যায়। AfterAll অপারেশনের একটি সেটের পরে একটি অপারেশন অর্ডার করার জন্য টোকেনের একটি সংযোগ হিসাবে ব্যবহার করা যেতে পারে।

AfterAll(tokens)

যুক্তি আদর্শ শব্দার্থবিদ্যা
tokens XlaOp এর ভেক্টর টোকেনের বিভিন্ন সংখ্যা

StableHLO তথ্যের জন্য StableHLO - after_all দেখুন।

অলগ্যাদার

আরও দেখুন XlaBuilder::AllGather

প্রতিলিপি জুড়ে সংযোজন সম্পাদন করে।

AllGather(operand, all_gather_dimension, shard_count, replica_groups, channel_id, layout, use_global_device_ids)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp প্রতিলিপি জুড়ে সংযুক্ত করার জন্য অ্যারে
all_gather_dimension int64 সংযোজন মাত্রা
shard_count int64 প্রতিটি প্রতিরূপ গোষ্ঠীর আকার
replica_groups int64 এর ভেক্টরগুলির ভেক্টর যেসব গোষ্ঠীর মধ্যে সংযোগ স্থাপন করা হয়
channel_id ঐচ্ছিক ChannelHandle ক্রস-মডিউল যোগাযোগের জন্য ঐচ্ছিক চ্যানেল আইডি
layout ঐচ্ছিক Layout একটি লেআউট প্যাটার্ন তৈরি করে যা আর্গুমেন্টে মিলিত লেআউটটি ক্যাপচার করবে।
use_global_device_ids ঐচ্ছিক bool ReplicaGroup কনফিগারেশনের আইডিগুলো যদি গ্লোবাল আইডি প্রতিনিধিত্ব করে তাহলে true রিটার্ন করে।
  • replica_groups হল এমন একটি তালিকা যার মধ্যে কনক্যাটেনেশন করা হয় (বর্তমান রেপ্লিকার জন্য রেপ্লিকা আইডি ReplicaId ব্যবহার করে পুনরুদ্ধার করা যেতে পারে)। প্রতিটি গ্রুপের রেপ্লিকাগুলির ক্রম নির্ধারণ করে যে ফলাফলে তাদের ইনপুটগুলি কোন ক্রমে অবস্থিত। replica_groups হয় খালি থাকতে হবে (যে ক্ষেত্রে সমস্ত রেপ্লিকা একটি একক গ্রুপের অন্তর্গত, 0 থেকে N - 1 পর্যন্ত ক্রমযুক্ত), অথবা রেপ্লিকাগুলির সংখ্যার সমান সংখ্যক উপাদান থাকতে হবে। উদাহরণস্বরূপ, replica_groups = {0, 2}, {1, 3} 0 এবং 2 , এবং 1 এবং 3 রেপ্লিকাগুলির মধ্যে কনক্যাটেনেশন করে।
  • shard_count হল প্রতিটি রেপ্লিকা গ্রুপের আকার। যেখানে replica_groups খালি থাকে, সেখানে আমাদের এটি প্রয়োজন।
  • channel_id ক্রস-মডিউল যোগাযোগের জন্য ব্যবহৃত হয়: শুধুমাত্র একই channel_id সহ all-gather অপারেশনগুলি একে অপরের সাথে যোগাযোগ করতে পারে।
  • use_global_device_ids যদি ReplicaGroup কনফিগারেশনের আইডিগুলি একটি replica id এর পরিবর্তে (replica_id * partition_count + partition_id) এর একটি গ্লোবাল আইডি উপস্থাপন করে তবে true রিটার্ন করে। যদি এই অল-রিডুস ক্রস-পার্টিশন এবং ক্রস-রেপ্লিকা উভয়ই হয় তবে এটি ডিভাইসগুলির আরও নমনীয় গ্রুপিং সক্ষম করে।

আউটপুট আকৃতি হল ইনপুট আকৃতি যেখানে all_gather_dimension কে shard_count গুণ বড় করা হয়েছে। উদাহরণস্বরূপ, যদি দুটি প্রতিলিপি থাকে এবং দুটি প্রতিলিপিতে অপারেন্ডের মান যথাক্রমে [1.0, 2.5] এবং [3.0, 5.25] থাকে, তাহলে এই অপশন থেকে আউটপুট মান যেখানে all_gather_dim 0 হয় উভয় প্রতিলিপিতে [1.0, 2.5, 3.0,5.25] হবে।

AllGather এর API অভ্যন্তরীণভাবে 2টি HLO নির্দেশাবলীতে বিভক্ত ( AllGatherStart এবং AllGatherDone )।

আরও দেখুন HloInstruction::CreateAllGatherStart

AllGatherStart , AllGatherDone HLO তে আদিম হিসেবে কাজ করে। এই অপশনগুলি HLO ডাম্পে প্রদর্শিত হতে পারে, কিন্তু এগুলি শেষ ব্যবহারকারীদের দ্বারা ম্যানুয়ালি তৈরি করার উদ্দেশ্যে নয়।

StableHLO তথ্যের জন্য StableHLO - all_gather দেখুন।

AllReduce সম্পর্কে

আরও দেখুন XlaBuilder::AllReduce

প্রতিলিপি জুড়ে একটি কাস্টম গণনা সম্পাদন করে।

AllReduce(operand, computation, replica_groups, channel_id, shape_with_layout, use_global_device_ids)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp অ্যারে অথবা খালি না থাকা অ্যারের একটি টুপল যা প্রতিলিপি জুড়ে হ্রাস করবে
computation XlaComputation হ্রাস গণনা
replica_groups ReplicaGroup ভেক্টর যেসব গ্রুপের মধ্যে হ্রাস করা হয়
channel_id ঐচ্ছিক ChannelHandle ক্রস-মডিউল যোগাযোগের জন্য ঐচ্ছিক চ্যানেল আইডি
shape_with_layout ঐচ্ছিক Shape স্থানান্তরিত ডেটার লেআউট নির্ধারণ করে
use_global_device_ids ঐচ্ছিক bool ReplicaGroup কনফিগারেশনের আইডিগুলো যদি গ্লোবাল আইডি প্রতিনিধিত্ব করে তাহলে true রিটার্ন করে।
  • যখন operand অ্যারের একটি টুপল হয়, তখন টুপলের প্রতিটি এলিমেন্টে অল-রিডুস সঞ্চালিত হয়।
  • replica_groups হল রেপ্লিকা গ্রুপের একটি তালিকা যার মধ্যে রিডাকশন করা হয় (বর্তমান রেপ্লিকার জন্য রেপ্লিকা আইডি ReplicaId ব্যবহার করে পুনরুদ্ধার করা যেতে পারে)। replica_groups হয় খালি থাকতে হবে (যে ক্ষেত্রে সমস্ত রেপ্লিকা একটি একক গ্রুপের অন্তর্গত), অথবা রেপ্লিকার সংখ্যার সমান সংখ্যক উপাদান থাকতে হবে। উদাহরণস্বরূপ, replica_groups = {0, 2}, {1, 3} রেপ্লিকা 0 এবং 2 এবং 1 এবং 3 এর মধ্যে রিডাকশন করে।
  • channel_id ক্রস-মডিউল যোগাযোগের জন্য ব্যবহৃত হয়: শুধুমাত্র একই channel_id সহ all-reduce অপারেশনগুলি একে অপরের সাথে যোগাযোগ করতে পারে।
  • shape_with_layout : AllReduce এর লেআউটকে প্রদত্ত লেআউটে জোর করে। এটি আলাদাভাবে কম্পাইল করা AllReduce অপশনের একটি গ্রুপের জন্য একই লেআউট নিশ্চিত করতে ব্যবহৃত হয়।
  • use_global_device_ids যদি ReplicaGroup কনফিগারেশনের আইডিগুলি একটি replica id এর পরিবর্তে (replica_id * partition_count + partition_id) এর একটি গ্লোবাল আইডি উপস্থাপন করে তবে true রিটার্ন করে। যদি এই অল-রিডুস ক্রস-পার্টিশন এবং ক্রস-রেপ্লিকা উভয়ই হয় তবে এটি ডিভাইসগুলির আরও নমনীয় গ্রুপিং সক্ষম করে।

আউটপুট আকৃতি ইনপুট আকৃতির মতোই। উদাহরণস্বরূপ, যদি দুটি প্রতিলিপি থাকে এবং দুটি প্রতিলিপিতে অপারেন্ডের মান যথাক্রমে [1.0, 2.5] এবং [3.0, 5.25] থাকে, তাহলে এই অপ এবং সমীকরণ গণনা থেকে আউটপুট মান উভয় প্রতিলিপিতে [4.0, 7.75] হবে। যদি ইনপুটটি একটি টুপল হয়, তাহলে আউটপুটটিও একটি টুপল হবে।

AllReduce এর ফলাফল গণনা করার জন্য প্রতিটি রেপ্লিকা থেকে একটি ইনপুট থাকা প্রয়োজন, তাই যদি একটি রেপ্লিকা একটি AllReduce নোড অন্যটির চেয়ে বেশি বার চালায়, তাহলে পূর্ববর্তী রেপ্লিকাটি চিরকাল অপেক্ষা করবে। যেহেতু রেপ্লিকাগুলি একই প্রোগ্রাম চালাচ্ছে, তাই এটি হওয়ার খুব বেশি উপায় নেই, তবে এটি সম্ভব যখন একটি while লুপের অবস্থা infeed থেকে প্রাপ্ত ডেটার উপর নির্ভর করে এবং infeed থাকা ডেটা while লুপকে একটি রেপ্লিকাতে অন্যটির চেয়ে বেশি বার পুনরাবৃত্তি করে।

AllReduce এর API অভ্যন্তরীণভাবে 2টি HLO নির্দেশাবলীতে বিভক্ত ( AllReduceStart এবং AllReduceDone )।

আরও দেখুন HloInstruction::CreateAllReduceStart

AllReduceStart এবং AllReduceDone HLO তে প্রিমিটিভ হিসেবে কাজ করে। এই অপশনগুলি HLO ডাম্পে প্রদর্শিত হতে পারে, কিন্তু এগুলি শেষ ব্যবহারকারীদের দ্বারা ম্যানুয়ালি তৈরি করার উদ্দেশ্যে নয়।

ক্রসরেপ্লিকাসাম

আরও দেখুন XlaBuilder::CrossReplicaSum

একটি সমষ্টি গণনার মাধ্যমে AllReduce সম্পাদন করে।

CrossReplicaSum(operand, replica_groups)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp সম্পর্কে অ্যারে অথবা খালি না থাকা অ্যারের একটি টুপল যা প্রতিলিপি জুড়ে হ্রাস করবে
replica_groups int64 এর ভেক্টরগুলির ভেক্টর যেসব গ্রুপের মধ্যে হ্রাস করা হয়

প্রতিটি উপগোষ্ঠীর রেপ্লিকাগুলির মধ্যে অপারেন্ড মানের যোগফল প্রদান করে। সমস্ত প্রতিলিপি যোগফলকে একটি ইনপুট সরবরাহ করে এবং সমস্ত প্রতিলিপি প্রতিটি উপগোষ্ঠীর জন্য ফলাফলের যোগফল গ্রহণ করে।

সকলের জন্য

আরও দেখুন XlaBuilder::AllToAll

AllToAll একটি সম্মিলিত অপারেশন যা সমস্ত কোর থেকে সমস্ত কোরে ডেটা পাঠায়। এর দুটি ধাপ রয়েছে:

  1. স্ক্যাটার ফেজ। প্রতিটি কোরে, অপারেন্ডটি split_dimensions বরাবর split_count সংখ্যক ব্লকে বিভক্ত হয় এবং ব্লকগুলি সমস্ত কোরে ছড়িয়ে ছিটিয়ে থাকে, যেমন, ith ব্লকটি ith কোরে পাঠানো হয়।
  2. সংগ্রহের পর্যায়। প্রতিটি কোর concat_dimension বরাবর প্রাপ্ত ব্লকগুলিকে একত্রিত করে।

অংশগ্রহণকারী কোরগুলি নিম্নলিখিতভাবে কনফিগার করা যেতে পারে:

  • replica_groups : প্রতিটি ReplicaGroup-এ গণনায় অংশগ্রহণকারী replica id-এর একটি তালিকা থাকে (বর্তমান replica-এর replica id ReplicaId ব্যবহার করে পুনরুদ্ধার করা যেতে পারে)। AllToAll নির্দিষ্ট ক্রমে উপগোষ্ঠীর মধ্যে প্রয়োগ করা হবে। উদাহরণস্বরূপ, replica_groups = { {1,2,3}, {4,5,0} } এর অর্থ হল একটি AllToAll replicas {1, 2, 3} এর মধ্যে এবং সংগ্রহ পর্যায়ে প্রয়োগ করা হবে, এবং প্রাপ্ত ব্লকগুলি 1, 2, 3 এর একই ক্রমে সংযুক্ত করা হবে। তারপর, 4, 5, 0 প্রতিলিপির মধ্যে আরেকটি AllToAll প্রয়োগ করা হবে এবং সংযুক্তকরণ ক্রমও 4, 5, 0। যদি replica_groups খালি থাকে, তাহলে সমস্ত প্রতিলিপি তাদের উপস্থিতির সংযুক্তকরণ ক্রমে একটি গোষ্ঠীর অন্তর্গত।

পূর্বশর্ত:

  • split_dimension এ অপারেন্ডের মাত্রার আকার split_count দ্বারা বিভাজ্য।
  • অপারেন্ডের আকৃতি টুপল নয়।

AllToAll(operand, split_dimension, concat_dimension, split_count, replica_groups, layout, channel_id)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp n মাত্রিক ইনপুট অ্যারে
split_dimension int64 [0,n) ব্যবধানের একটি মান যা অপারেন্ডটি যে মাত্রা বরাবর বিভক্ত তা নির্দেশ করে
concat_dimension int64 ব্যবধান [0,n) এর একটি মান যা বিভক্ত ব্লকগুলিকে সংযুক্ত করার মাত্রার নাম দেয়
split_count int64 এই অপারেশনে অংশগ্রহণকারী কোরের সংখ্যা। যদি replica_groups খালি থাকে, তাহলে এটি প্রতিলিপির সংখ্যা হওয়া উচিত; অন্যথায়, এটি প্রতিটি গ্রুপের প্রতিলিপির সংখ্যার সমান হওয়া উচিত।
replica_groups ReplicaGroup ভেক্টর প্রতিটি গ্রুপে রেপ্লিকা আইডির একটি তালিকা থাকে।
layout ঐচ্ছিক Layout ব্যবহারকারী-নির্দিষ্ট মেমরি লেআউট
channel_id ঐচ্ছিক ChannelHandle প্রতিটি সেন্ড/রেকভি জোড়ার জন্য অনন্য শনাক্তকারী

আকার এবং লেআউট সম্পর্কে আরও তথ্যের জন্য xla::shapes দেখুন।

StableHLO তথ্যের জন্য StableHLO - all_to_all দেখুন।

AllToAll - উদাহরণ ১।

XlaBuilder b("alltoall");
auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16}), "x");
AllToAll(
    x,
    /*split_dimension=*/ 1,
    /*concat_dimension=*/ 0,
    /*split_count=*/ 4);

উপরের উদাহরণে, Alltoall-এ ৪টি কোর অংশগ্রহণ করছে। প্রতিটি কোরে, অপারেন্ডটি মাত্রা ১ বরাবর ৪টি অংশে বিভক্ত, তাই প্রতিটি অংশের আকৃতি f32[4,4]। ৪টি অংশ সমস্ত কোরে ছড়িয়ে ছিটিয়ে থাকে। তারপর প্রতিটি কোর প্রাপ্ত অংশগুলিকে মাত্রা ০ বরাবর, কোর ০-৪ এর ক্রমানুসারে সংযুক্ত করে। সুতরাং প্রতিটি কোরের আউটপুট f32[16,4] আকার ধারণ করে।

AllToAll - উদাহরণ ২ - StableHLO

StableHLO-এর জন্য AllToAll ডেটাফ্লোর একটি উদাহরণ

উপরের উদাহরণে, AllToAll-এ ২টি প্রতিলিপি অংশগ্রহণ করছে। প্রতিটি প্রতিলিপিতে, অপারেন্ডের আকৃতি f32[2,4]। অপারেন্ডটি মাত্রা ১ বরাবর ২টি অংশে বিভক্ত, তাই প্রতিটি অংশের আকৃতি f32[2,2]। এরপর ২টি অংশ প্রতিলিপি গ্রুপে তাদের অবস্থান অনুসারে প্রতিলিপিগুলিতে বিনিময় করা হয়। প্রতিটি প্রতিলিপি উভয় অপারেন্ড থেকে তার সংশ্লিষ্ট অংশ সংগ্রহ করে এবং মাত্রা ০ বরাবর তাদের সংযুক্ত করে। ফলস্বরূপ, প্রতিটি প্রতিলিপির আউটপুট f32[4,2] আকৃতির হয়।

র‍্যাগডঅলটুঅল

আরও দেখুন XlaBuilder::RaggedAllToAll

RaggedAllToAll একটি সম্মিলিত অল-টু-অল অপারেশন সম্পাদন করে, যেখানে ইনপুট এবং আউটপুট হল র‍্যাগড টেনসর।

RaggedAllToAll(input, input_offsets, send_sizes, output, output_offsets, recv_sizes, replica_groups, channel_id)

যুক্তি আদর্শ শব্দার্থবিদ্যা
input XlaOp T ধরণের N অ্যারে
input_offsets XlaOp T ধরণের N অ্যারে
send_sizes XlaOp T ধরণের N অ্যারে
output XlaOp T ধরণের N অ্যারে
output_offsets XlaOp T ধরণের N অ্যারে
recv_sizes XlaOp T ধরণের N অ্যারে
replica_groups ReplicaGroup ভেক্টর প্রতিটি গ্রুপে রেপ্লিকা আইডির একটি তালিকা থাকে।
channel_id ঐচ্ছিক ChannelHandle প্রতিটি সেন্ড/রেকভি জোড়ার জন্য অনন্য শনাক্তকারী

র‍্যাগড টেনসর তিনটি টেনসরের সেট দ্বারা সংজ্ঞায়িত করা হয়:

  • data : data টেনসরটি তার বাইরেরতম মাত্রা বরাবর "র‍্যাগড", যার সাথে প্রতিটি সূচীকৃত উপাদানের পরিবর্তনশীল আকার রয়েছে।
  • offsets ': offsets টেনসর data টেনসরের বাইরেরতম মাত্রাকে সূচিত করে এবং data টেনসরের প্রতিটি র‍্যাগড এলিমেন্টের শুরুর অফসেটকে প্রতিনিধিত্ব করে।
  • sizes : sizes tensor data টেনসরের প্রতিটি র‍্যাগড এলিমেন্টের আকার প্রতিনিধিত্ব করে, যেখানে আকারটি উপ-উপাদানের এককগুলিতে নির্দিষ্ট করা হয়। একটি উপ-উপাদানকে 'ডেটা' টেনসর আকৃতির প্রত্যয় হিসাবে সংজ্ঞায়িত করা হয় যা সবচেয়ে বাইরের "র‍্যাগড" মাত্রা অপসারণ করে প্রাপ্ত হয়।
  • offsets এবং sizes টেনসরগুলির আকার একই হতে হবে।

র‍্যাগড টেনসরের একটি উদাহরণ:

data: [8,3] =
{ {a,b,c},{d,e,f},{g,h,i},{j,k,l},{m,n,o},{p,q,r},{s,t,u},{v,w,x} }

offsets: [3] = {0, 1, 4}

sizes: [3] = {1, 3, 4}

// Index 'data' at 'offsets'[0], 'sizes'[0]' // {a,b,c}

// Index 'data' at 'offsets'[1], 'sizes'[1]' // {d,e,f},{g,h,i},{j,k,l}

// Index 'data' at 'offsets'[2], 'sizes'[2]' // {m,n,o},{p,q,r},{s,t,u},{v,w,x}

output_offsets এমনভাবে sharded করতে হবে যাতে প্রতিটি রেপ্লিকা লক্ষ্য রেপ্লিকা আউটপুট দৃষ্টিকোণে অফসেট ধারণ করে।

i-th আউটপুট অফসেটের জন্য, বর্তমান রেপ্লিকাটি input[input_offsets[i]:input_offsets[i]+input_sizes[i]] আপডেট i -th replica তে পাঠাবে যা i -th replica output তে output_i[output_offsets[i]:output_offsets[i]+send_sizes[i]] তে output হবে।

উদাহরণস্বরূপ, যদি আমাদের 2টি প্রতিলিপি থাকে:

replica 0:
input: [1, 2, 2]
output:[0, 0, 0, 0]
input_offsets: [0, 1]
send_sizes: [1, 2]
output_offsets: [0, 0]
recv_sizes: [1, 1]

replica 1:
input: [3, 4, 0]
output: [0, 0, 0, 0]
input_offsets: [0, 1]
send_sizes: [1, 1]
output_offsets: [1, 2]
recv_sizes: [2, 1]

// replica 0's result will be: [1, 3, 0, 0]
// replica 1's result will be: [2, 2, 4, 0]

র‍্যাগড অল-টু-অল এইচএলও-এর নিম্নলিখিত যুক্তি রয়েছে:

  • input : র‍্যাগড ইনপুট ডেটা টেনসর।
  • output : র‍্যাগড আউটপুট ডেটা টেনসর।
  • input_offsets : র‍্যাগড ইনপুট অফসেট টেনসর।
  • send_sizes : র‍্যাগড সেন্ড সাইজ টেনসর।
  • output_offsets : টার্গেট রেপ্লিকা আউটপুটে র‍্যাগড অফসেটের অ্যারে।
  • recv_sizes : র‍্যাগড recv সাইজ টেনসর।

*_offsets এবং *_sizes টেনসরগুলির আকৃতি একই হতে হবে।

*_offsets এবং *_sizes টেনসরের জন্য দুটি আকার সমর্থিত:

  • [num_devices] যেখানে ragged-all-to-all রেপ্লিকা গ্রুপের প্রতিটি রিমোট ডিভাইসে সর্বাধিক একটি আপডেট পাঠাতে পারে। উদাহরণস্বরূপ:
for (remote_device_id : replica_group) {
     SEND input[input_offsets[remote_device_id]],
     output[output_offsets[remote_device_id]],
     send_sizes[remote_device_id] }
  • [num_devices, num_updates] যেখানে ragged-all-to-all রেপ্লিকা গ্রুপের প্রতিটি রিমোট ডিভাইসের জন্য একই রিমোট ডিভাইসে (প্রতিটি ভিন্ন অফসেটে) num_updates আপডেট পাঠাতে পারে।

উদাহরণস্বরূপ:

for (remote_device_id : replica_group) {
    for (update_idx : num_updates) {
        SEND input[input_offsets[remote_device_id][update_idx]],
        output[output_offsets[remote_device_id][update_idx]]],
        send_sizes[remote_device_id][update_idx] } }

এবং

আরও দেখুন XlaBuilder::And

দুটি টেনসর lhs এবং rhs এর উপাদান-ভিত্তিক AND সম্পাদন করে।

And(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
এলএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে
আরএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে

আর্গুমেন্টের আকারগুলি হয় একই রকম অথবা সামঞ্জস্যপূর্ণ হতে হবে। আকারগুলির সামঞ্জস্যপূর্ণ হওয়ার অর্থ কী তা সম্পর্কে সম্প্রচার ডকুমেন্টেশন দেখুন। একটি অপারেশনের ফলাফলের একটি আকৃতি থাকে যা দুটি ইনপুট অ্যারে সম্প্রচারের ফলাফল। এই ভেরিয়েন্টে, বিভিন্ন র‍্যাঙ্কের অ্যারের মধ্যে ক্রিয়াকলাপ সমর্থিত নয় , যদি না অপারেন্ডগুলির মধ্যে একটি স্কেলার হয়।

And-এর জন্য ভিন্ন-মাত্রিক সম্প্রচার সমর্থন সহ একটি বিকল্প রূপ বিদ্যমান:

And(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
এলএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে
আরএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে
সম্প্রচার_মাত্রা অ্যারেস্লাইস অপারেন্ড আকৃতির প্রতিটি মাত্রা লক্ষ্য আকৃতিতে কোন মাত্রার সাথে মিলে যায়?

এই ধরণের অপারেশনটি বিভিন্ন র‍্যাঙ্কের অ্যারের মধ্যে গাণিতিক ক্রিয়াকলাপের জন্য ব্যবহার করা উচিত (যেমন একটি ভেক্টরে একটি ম্যাট্রিক্স যোগ করা)।

অতিরিক্ত broadcast_dimensions অপারেন্ড হল পূর্ণসংখ্যার একটি অংশ যা অপারেন্ড সম্প্রচারের জন্য ব্যবহৃত মাত্রা নির্দিষ্ট করে। শব্দার্থবিদ্যা সম্প্রচার পৃষ্ঠায় বিস্তারিতভাবে বর্ণনা করা হয়েছে।

StableHLO তথ্যের জন্য StableHLO - এবং দেখুন।

অ্যাসিঙ্ক

আরও দেখুন HloInstruction::CreateAsyncStart , HloInstruction::CreateAsyncUpdate , HloInstruction::CreateAsyncDone

AsyncDone , AsyncStart , এবং AsyncUpdate হল অভ্যন্তরীণ HLO নির্দেশাবলী যা অ্যাসিঙ্ক্রোনাস অপারেশনের জন্য ব্যবহৃত হয় এবং HLO তে আদিম হিসেবে কাজ করে। এই অপারেশনগুলি HLO ডাম্পে প্রদর্শিত হতে পারে কিন্তু এগুলি শেষ ব্যবহারকারীদের দ্বারা ম্যানুয়ালি তৈরি করার উদ্দেশ্যে নয়।

Atan2 সম্পর্কে

আরও দেখুন XlaBuilder::Atan2

lhs এবং rhs এ উপাদান-ভিত্তিক atan2 অপারেশন সম্পাদন করে।

Atan2(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
এলএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে
আরএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে

আর্গুমেন্টের আকারগুলি হয় একই রকম অথবা সামঞ্জস্যপূর্ণ হতে হবে। আকারগুলির সামঞ্জস্যপূর্ণ হওয়ার অর্থ কী তা সম্পর্কে সম্প্রচার ডকুমেন্টেশন দেখুন। একটি অপারেশনের ফলাফলের একটি আকৃতি থাকে যা দুটি ইনপুট অ্যারে সম্প্রচারের ফলাফল। এই ভেরিয়েন্টে, বিভিন্ন র‍্যাঙ্কের অ্যারের মধ্যে ক্রিয়াকলাপ সমর্থিত নয় , যদি না অপারেন্ডগুলির মধ্যে একটি স্কেলার হয়।

Atan2 এর জন্য ভিন্ন-মাত্রিক সম্প্রচার সমর্থন সহ একটি বিকল্প রূপ বিদ্যমান:

Atan2(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
এলএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে
আরএইচএস XlaOp সম্পর্কে বাম-হাতের অপারেন্ড: T ধরণের অ্যারে
সম্প্রচার_মাত্রা অ্যারেস্লাইস অপারেন্ড আকৃতির প্রতিটি মাত্রা লক্ষ্য আকৃতিতে কোন মাত্রার সাথে মিলে যায়?

এই ধরণের অপারেশনটি বিভিন্ন র‍্যাঙ্কের অ্যারের মধ্যে গাণিতিক ক্রিয়াকলাপের জন্য ব্যবহার করা উচিত (যেমন একটি ভেক্টরে একটি ম্যাট্রিক্স যোগ করা)।

অতিরিক্ত broadcast_dimensions অপারেন্ড হল পূর্ণসংখ্যার একটি অংশ যা অপারেন্ড সম্প্রচারের জন্য ব্যবহৃত মাত্রা নির্দিষ্ট করে। শব্দার্থবিদ্যা সম্প্রচার পৃষ্ঠায় বিস্তারিতভাবে বর্ণনা করা হয়েছে।

StableHLO তথ্যের জন্য StableHLO - atan2 দেখুন।

ব্যাচনর্মগ্র্যাড

অ্যালগরিদমের বিস্তারিত বিবরণের জন্য XlaBuilder::BatchNormGrad এবং মূল ব্যাচ নরমালাইজেশন পেপারটিও দেখুন।

ব্যাচ আদর্শের গ্রেডিয়েন্ট গণনা করে।

BatchNormGrad(operand, scale, batch_mean, batch_var, grad_output, epsilon, feature_index)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp সম্পর্কে n মাত্রিক অ্যারেকে স্বাভাবিক করতে হবে (x)
scale XlaOp সম্পর্কে ১ মাত্রিক অ্যারে (\(\gamma\))
batch_mean XlaOp সম্পর্কে ১ মাত্রিক অ্যারে (\(\mu\))
batch_var XlaOp সম্পর্কে ১ মাত্রিক অ্যারে (\(\sigma^2\))
grad_output XlaOp সম্পর্কে BatchNormTraining এ পাস করা গ্রেডিয়েন্ট (\(\nabla y\))
epsilon float এপসিলন মান (\(\epsilon\))
feature_index int64 operand মাত্রা বৈশিষ্ট্যের সূচক

ফিচার ডাইমেনশনের প্রতিটি ফিচারের জন্য ( feature_index হল operand ফিচার ডাইমেনশনের সূচক), অপারেশনটি অন্যান্য সমস্ত ডাইমেনশনের operand , offset এবং scale সাপেক্ষে গ্রেডিয়েন্ট গণনা করে। feature_index অবশ্যই operand ফিচার ডাইমেনশনের জন্য একটি বৈধ সূচক হতে হবে।

তিনটি গ্রেডিয়েন্ট নিম্নলিখিত সূত্র দ্বারা সংজ্ঞায়িত করা হয়েছে (একটি 4-মাত্রিক অ্যারেকে operand হিসাবে ধরে নেওয়া এবং বৈশিষ্ট্য মাত্রা সূচক l , ব্যাচ আকার m এবং স্থানিক আকার w এবং h সহ):

\[ \begin{split} c_l&= \frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \left( \nabla y_{ijkl} \frac{x_{ijkl} - \mu_l}{\sigma^2_l+\epsilon} \right) \\\\ d_l&= \frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \nabla y_{ijkl} \\\\ \nabla x_{ijkl} &= \frac{\gamma_{l} }{\sqrt{\sigma^2_{l}+\epsilon} } \left( \nabla y_{ijkl} - d_l - c_l (x_{ijkl} - \mu_{l}) \right) \\\\ \nabla \gamma_l &= \sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \left( \nabla y_{ijkl} \frac{x_{ijkl} - \mu_l}{\sqrt{\sigma^2_{l}+\epsilon} } \right) \\\\\ \nabla \beta_l &= \sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \nabla y_{ijkl} \end{split} \]

ইনপুট batch_mean এবং batch_var ব্যাচ এবং স্থানিক মাত্রা জুড়ে মুহূর্ত মান উপস্থাপন করে।

আউটপুট টাইপটি তিনটি হ্যান্ডেলের একটি টুপল:

আউটপুট আদর্শ শব্দার্থবিদ্যা
grad_operand XlaOp সম্পর্কে ইনপুট operand সাপেক্ষে গ্রেডিয়েন্ট (\(\nabla x\))
grad_scale XlaOp সম্পর্কে ইনপুট ** scale ** এর সাপেক্ষে গ্রেডিয়েন্ট (\(\nabla\gamma\))
grad_offset XlaOp সম্পর্কে ইনপুট offset ক্ষেত্রে গ্রেডিয়েন্ট (\(\nabla\beta\))

StableHLO তথ্যের জন্য StableHLO - batch_norm_grad দেখুন।

ব্যাচনর্মইনফারেন্স

অ্যালগরিদমের বিস্তারিত বিবরণের জন্য XlaBuilder::BatchNormInference এবং মূল ব্যাচ নরমালাইজেশন পেপারটিও দেখুন।

ব্যাচ এবং স্থানিক মাত্রা জুড়ে একটি অ্যারেকে স্বাভাবিক করে তোলে।

BatchNormInference(operand, scale, offset, mean, variance, epsilon, feature_index)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp সম্পর্কে n মাত্রিক অ্যারে স্বাভাবিক করতে হবে
scale XlaOp সম্পর্কে ১ মাত্রিক অ্যারে
offset XlaOp সম্পর্কে ১ মাত্রিক অ্যারে
mean XlaOp সম্পর্কে ১ মাত্রিক অ্যারে
variance XlaOp সম্পর্কে ১ মাত্রিক অ্যারে
epsilon float এপসিলন মান
feature_index int64 operand মাত্রা বৈশিষ্ট্যের সূচক

ফিচার ডাইমেনশনের প্রতিটি ফিচারের জন্য ( feature_index হল operand ফিচার ডাইমেনশনের সূচক), অপারেশনটি অন্যান্য সমস্ত ডাইমেনশনের গড় এবং ভ্যারিয়েন্স গণনা করে এবং operand প্রতিটি এলিমেন্টকে স্বাভাবিক করার জন্য গড় এবং ভ্যারিয়েন্স ব্যবহার করে। feature_index অবশ্যই operand ফিচার ডাইমেনশনের জন্য একটি বৈধ ইনডেক্স হতে হবে।

BatchNormInference হল প্রতিটি ব্যাচের জন্য mean এবং variance গণনা না করে BatchNormTraining কল করার সমতুল্য। এটি আনুমানিক মান হিসাবে ইনপুট mean এবং variance ব্যবহার করে। এই অপশনের উদ্দেশ্য হল ইনফারেন্সে ল্যাটেন্সি কমানো, তাই এর নাম BatchNormInference

আউটপুটটি একটি n-মাত্রিক, স্বাভাবিক অ্যারে যার আকৃতি ইনপুট operand মতোই।

StableHLO তথ্যের জন্য StableHLO - batch_norm_inference দেখুন।

ব্যাচনর্মট্রেনিং

অ্যালগরিদমের বিস্তারিত বিবরণের জন্য XlaBuilder::BatchNormTraining এবং the original batch normalization paper দেখুন।

ব্যাচ এবং স্থানিক মাত্রা জুড়ে একটি অ্যারেকে স্বাভাবিক করে তোলে।

BatchNormTraining(operand, scale, offset, epsilon, feature_index)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp n মাত্রিক অ্যারেকে স্বাভাবিক করতে হবে (x)
scale XlaOp ১ মাত্রিক অ্যারে (\(\gamma\))
offset XlaOp ১ মাত্রিক অ্যারে (\(\beta\))
epsilon float এপসিলন মান (\(\epsilon\))
feature_index int64 operand মাত্রা বৈশিষ্ট্যের সূচক

ফিচার ডাইমেনশনের প্রতিটি ফিচারের জন্য ( feature_index হল operand ফিচার ডাইমেনশনের সূচক), অপারেশনটি অন্যান্য সমস্ত ডাইমেনশনের গড় এবং ভ্যারিয়েন্স গণনা করে এবং operand প্রতিটি এলিমেন্টকে স্বাভাবিক করার জন্য গড় এবং ভ্যারিয়েন্স ব্যবহার করে। feature_index অবশ্যই operand ফিচার ডাইমেনশনের জন্য একটি বৈধ ইনডেক্স হতে হবে।

operand প্রতিটি ব্যাচের জন্য অ্যালগরিদম নিম্নরূপ: \(x\) যেখানে m উপাদান রয়েছে এবং স্থানিক মাত্রার আকার w এবং h (ধরে নিচ্ছি operand একটি 4 মাত্রিক অ্যারে):

  • ব্যাচ গড় গণনা করে \(\mu_l\) প্রতিটি বৈশিষ্ট্যের জন্য l বৈশিষ্ট্যের মাত্রায়:\(\mu_l=\frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h x_{ijkl}\)

  • ব্যাচ ভ্যারিয়েন্স গণনা করে \(\sigma^2_l\): $\সিগমা^2 l=\frac{1}{mwh}\sum {i=1}^m\sum {j=1}^w\sum {k=1}^h (x_{ijkl} - \mu_l)^2$

  • স্বাভাবিক করে তোলে, স্কেল করে এবং পরিবর্তন করে:\(y_{ijkl}=\frac{\gamma_l(x_{ijkl}-\mu_l)}{\sqrt[2]{\sigma^2_l+\epsilon} }+\beta_l\)

এপসিলন মান, সাধারণত একটি ছোট সংখ্যা, শূন্য দিয়ে ভাগ করার ত্রুটি এড়াতে যোগ করা হয়।

আউটপুট টাইপটি তিনটি XlaOp এর একটি টুপল:

আউটপুট আদর্শ শব্দার্থবিদ্যা
output XlaOp ইনপুট operand মতো একই আকৃতির n মাত্রিক অ্যারে (y)
batch_mean XlaOp ১ মাত্রিক অ্যারে (\(\mu\))
batch_var XlaOp ১ মাত্রিক অ্যারে (\(\sigma^2\))

উপরের সূত্রগুলি ব্যবহার করে ব্যাচ এবং স্থানিক মাত্রা জুড়ে গণনা করা মুহূর্তগুলি হল batch_mean এবং batch_var

StableHLO তথ্যের জন্য StableHLO - batch_norm_training দেখুন।

বিটকাস্ট

আরও দেখুন HloInstruction::CreateBitcast

Bitcast HLO ডাম্পে প্রদর্শিত হতে পারে, কিন্তু এগুলি শেষ ব্যবহারকারীদের দ্বারা ম্যানুয়ালি তৈরি করার উদ্দেশ্যে নয়।

বিটকাস্টকনভার্টটাইপ

আরও দেখুন XlaBuilder::BitcastConvertType

TensorFlow-এর tf.bitcast এর মতোই, এটি একটি ডেটা শেপ থেকে টার্গেট শেপে একটি এলিমেন্ট-ভিত্তিক বিটকাস্ট অপারেশন সম্পাদন করে। ইনপুট এবং আউটপুট আকার অবশ্যই মিলতে হবে: যেমন s32 এলিমেন্টগুলি বিটকাস্ট রুটিনের মাধ্যমে f32 এলিমেন্টে পরিণত হয়, এবং একটি s32 এলিমেন্ট চারটি s8 এলিমেন্টে পরিণত হয়। বিটকাস্ট একটি নিম্ন-স্তরের কাস্ট হিসাবে বাস্তবায়িত হয়, তাই বিভিন্ন ফ্লোটিং-পয়েন্ট উপস্থাপনা সহ মেশিনগুলি বিভিন্ন ফলাফল দেবে।

BitcastConvertType(operand, new_element_type)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp ডি-এর সাথে টাইপ টি-এর অ্যারে
new_element_type PrimitiveType টাইপ ইউ

অপারেন্ডের মাত্রা এবং লক্ষ্য আকৃতি অবশ্যই মিলতে হবে, শেষ মাত্রাটি বাদ দিলে যা রূপান্তরের আগে এবং পরে আদিম আকারের অনুপাত দ্বারা পরিবর্তিত হবে।

উৎস এবং গন্তব্য উপাদানের ধরণগুলি টিপল হওয়া উচিত নয়।

StableHLO তথ্যের জন্য StableHLO - bitcast_convert দেখুন।

বিটকাস্ট-বিভিন্ন প্রস্থের আদিম ধরণের রূপান্তর

BitcastConvert HLO নির্দেশনা সেই ক্ষেত্রে সমর্থন করে যেখানে আউটপুট উপাদান টাইপ T' এর আকার ইনপুট উপাদান T এর আকারের সমান নয়। যেহেতু পুরো অপারেশনটি ধারণাগতভাবে একটি বিটকাস্ট এবং অন্তর্নিহিত বাইট পরিবর্তন করে না, তাই আউটপুট উপাদানের আকৃতি পরিবর্তন করতে হবে। B = sizeof(T), B' = sizeof(T') এর জন্য, দুটি সম্ভাব্য ক্ষেত্রে রয়েছে।

প্রথমত, যখন B > B' , আউটপুট আকৃতিটি B/B' আকারের একটি নতুন ক্ষুদ্রতম মাত্রা পায়। উদাহরণস্বরূপ:

  f16[10,2]{1,0} %output = f16[10,2]{1,0} bitcast-convert(f32[10]{0} %input)

কার্যকর স্কেলারের ক্ষেত্রেও নিয়মটি একই থাকে:

  f16[2]{0} %output = f16[2]{0} bitcast-convert(f32[] %input)

বিকল্পভাবে, B' > B এর জন্য নির্দেশের জন্য ইনপুট আকৃতির শেষ লজিক্যাল মাত্রা B'/B এর সমান হওয়া প্রয়োজন, এবং রূপান্তরের সময় এই মাত্রাটি বাদ দেওয়া হয়:

  f32[10]{0} %output = f32[10]{0} bitcast-convert(f16[10,2]{1,0} %input)

মনে রাখবেন যে বিভিন্ন বিটউইথের মধ্যে রূপান্তরগুলি এলিমেন্টওয়াইজ নয়।

সম্প্রচার

আরও দেখুন XlaBuilder::Broadcast

অ্যারেতে থাকা ডেটা ডুপ্লিকেট করে একটি অ্যারেতে মাত্রা যোগ করে।

Broadcast(operand, broadcast_sizes)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp ডুপ্লিকেট করার জন্য অ্যারে
broadcast_sizes ArraySlice<int64> নতুন মাত্রার আকার

নতুন মাত্রাগুলি বাম দিকে সন্নিবেশ করা হয়েছে, অর্থাৎ যদি broadcast_sizes মান {a0, ..., aN} থাকে এবং অপারেন্ড আকৃতির মাত্রা {b0, ..., bM} থাকে তাহলে আউটপুটের আকৃতির মাত্রা {a0, ..., aN, b0, ..., bM} থাকে।

অপারেন্ডের কপিগুলিতে নতুন মাত্রা সূচক, অর্থাৎ

output[i0, ..., iN, j0, ..., jM] = operand[j0, ..., jM]

উদাহরণস্বরূপ, যদি operand একটি স্কেলার f32 হয় যার মান 2.0f , এবং broadcast_sizes {2, 3} হয়, তাহলে ফলাফলটি f32[2, 3] আকৃতির একটি অ্যারে হবে এবং ফলাফলের সমস্ত মান 2.0f হবে।

StableHLO তথ্যের জন্য StableHLO - সম্প্রচার দেখুন।

ব্রডকাস্টইনডিম

আরও দেখুন XlaBuilder::BroadcastInDim

অ্যারের ডেটা ডুপ্লিকেট করে একটি অ্যারের আকার এবং মাত্রার সংখ্যা প্রসারিত করে।

BroadcastInDim(operand, out_dim_size, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp ডুপ্লিকেট করার জন্য অ্যারে
out_dim_size ArraySlice<int64> লক্ষ্য আকৃতির মাত্রার আকার
broadcast_dimensions ArraySlice<int64> অপারেন্ড আকৃতির প্রতিটি মাত্রা লক্ষ্য আকৃতিতে কোন মাত্রার সাথে মিলে যায়?

ব্রডকাস্টের মতোই, তবে সাইজ ১ ব্যবহার করে যেকোনো জায়গায় মাত্রা যোগ করা এবং বিদ্যমান মাত্রা সম্প্রসারণের অনুমতি দেওয়া হয়।

operand out_dim_size দ্বারা বর্ণিত আকারে সম্প্রচারিত হয়। broadcast_dimensions operand মাত্রাগুলিকে লক্ষ্য আকৃতির মাত্রার সাথে ম্যাপ করে, অর্থাৎ অপারেন্ডের i'তম মাত্রা আউটপুট আকৃতির broadcast_dimension[i]'তম মাত্রার সাথে ম্যাপ করা হয়। operand মাত্রাগুলির আকার 1 হতে হবে অথবা আউটপুট আকৃতিতে ম্যাপ করা মাত্রার সমান হতে হবে। বাকি মাত্রাগুলি আকার 1 এর মাত্রা দিয়ে পূর্ণ করা হয়। ডিজেনারেট-ডাইমেনশন ব্রডকাস্টিং তারপর আউটপুট আকৃতিতে পৌঁছানোর জন্য এই ডিজেনারেট মাত্রাগুলি বরাবর সম্প্রচার করে। শব্দার্থবিদ্যা সম্প্রচার পৃষ্ঠায় বিস্তারিতভাবে বর্ণনা করা হয়েছে।

কল করুন

আরও দেখুন XlaBuilder::Call

প্রদত্ত যুক্তিগুলির সাথে একটি গণনা আহ্বান করে।

Call(computation, operands...)

যুক্তি আদর্শ শব্দার্থবিদ্যা
computation XlaComputation T_0, T_1, ..., T_{N-1} -> S ধরণের গণনা, যা ইচ্ছাকৃত ধরণের N প্যারামিটার সহ
operands N XlaOp s এর ক্রম ইচ্ছাকৃত ধরণের N আর্গুমেন্ট

operands অ্যারিটি এবং প্রকারগুলি computation প্যারামিটারগুলির সাথে মিলতে হবে। এতে কোনও operands না থাকার অনুমতি রয়েছে।

কম্পোজিটকল

আরও দেখুন XlaBuilder::CompositeCall

অন্যান্য StableHLO অপারেশনের সমন্বয়ে গঠিত (রচিত) একটি অপারেশনকে ধারণ করে, ইনপুট এবং composite_attributes গ্রহণ করে এবং ফলাফল তৈরি করে। op এর শব্দার্থবিদ্যা decomposition বৈশিষ্ট্য দ্বারা বাস্তবায়িত হয়। প্রোগ্রাম শব্দার্থবিদ্যা পরিবর্তন না করেই composite op কে এর decomposition দিয়ে প্রতিস্থাপন করা যেতে পারে। যেসব ক্ষেত্রে decomposition ইনলাইন করা একই op শব্দার্থবিদ্যা প্রদান করে না, custom_call ব্যবহার করা পছন্দ করুন।

একটি কম্পোজিট এর শব্দার্থবিদ্যা পরিবর্তন হলে বোঝাতে সংস্করণ ক্ষেত্র (ডিফল্ট 0) ব্যবহার করা হয়।

এই অপশনটি kCall হিসেবে is_composite=true অ্যাট্রিবিউট সহ বাস্তবায়িত হয়। decomposition ক্ষেত্রটি computation অ্যাট্রিবিউট দ্বারা নির্দিষ্ট করা হয়। ফ্রন্টএন্ড অ্যাট্রিবিউটগুলি composite.

উদাহরণ কম্পোজিট কল অপ:

f32[] call(f32[] %cst), to_apply=%computation, is_composite=true,
frontend_attributes = {
  composite.name="foo.bar",
  composite.attributes={n = 1 : i32, tensor = dense<1> : tensor<i32>},
  composite.version="1"
}

CompositeCall(computation, operands..., name, attributes, version)

যুক্তি আদর্শ শব্দার্থবিদ্যা
computation XlaComputation T_0, T_1, ..., T_{N-1} -> S ধরণের গণনা, যা ইচ্ছাকৃত ধরণের N প্যারামিটার সহ
operands N XlaOp s এর ক্রম মানের বৈচিত্র্যময় সংখ্যা
name string কম্পোজিটটির নাম
attributes ঐচ্ছিক string ঐচ্ছিক স্ট্রিংফাইড অ্যাট্রিবিউট অভিধান
version ঐচ্ছিক int64 কম্পোজিট অপের শব্দার্থবিদ্যার সংস্করণ আপডেটের সংখ্যা

একটি অপের decomposition নাম কোন ফিল্ড নয়, বরং এটি একটি to_apply অ্যাট্রিবিউট হিসেবে প্রদর্শিত হয় যা নিম্ন-স্তরের বাস্তবায়ন ধারণকারী ফাংশনের দিকে নির্দেশ করে, অর্থাৎ to_apply=%funcname

কম্পোজিট এবং পচন সম্পর্কে আরও তথ্য StableHLO স্পেসিফিকেশনে পাওয়া যাবে।

সিবিআরটি

আরও দেখুন XlaBuilder::Cbrt

উপাদান-ভিত্তিক ঘনমূলের ক্রিয়াকলাপ x -> cbrt(x)

Cbrt(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp ফাংশনের অপারেন্ড

Cbrt ঐচ্ছিক result_accuracy আর্গুমেন্টকেও সমর্থন করে:

Cbrt(operand, result_accuracy)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp ফাংশনের অপারেন্ড
result_accuracy ঐচ্ছিক ResultAccuracy একাধিক বাস্তবায়ন সহ ইউনারি অপশনের জন্য ব্যবহারকারী যে ধরণের নির্ভুলতার অনুরোধ করতে পারেন

result_accuracy সম্পর্কে আরও তথ্যের জন্য ফলাফলের নির্ভুলতা দেখুন।

StableHLO তথ্যের জন্য StableHLO - cbrt দেখুন।

সিল

আরও দেখুন XlaBuilder::Ceil

উপাদান-ভিত্তিক সিলিং x -> ⌈x⌉

Ceil(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp ফাংশনের অপারেন্ড

StableHLO তথ্যের জন্য StableHLO - ceil দেখুন।

চোলেস্কি

আরও দেখুন XlaBuilder::Cholesky

প্রতিসম (হার্মিটিয়ান) ধনাত্মক নির্দিষ্ট ম্যাট্রিক্সের একটি ব্যাচের চোলেস্কি পচন গণনা করে।

Cholesky(a, lower)

যুক্তি আদর্শ শব্দার্থবিদ্যা
a XlaOp > 2 মাত্রা সহ একটি জটিল বা ভাসমান-বিন্দু ধরণের অ্যারে।
lower bool a এর উপরের বা নীচের ত্রিভুজ ব্যবহার করবেন কিনা।

যদি lower true হয়, তাহলে নিম্ন-ত্রিভুজাকার ম্যাট্রিক্স l গণনা করে যাতে $a = l . l^T$। যদি lower false হয়, তাহলে ঊর্ধ্ব-ত্রিভুজাকার ম্যাট্রিক্স u গণনা করে যাতে\(a = u^T . u\).

ইনপুট ডেটা শুধুমাত্র a এর নিম্ন/উপরের ত্রিভুজ থেকে পঠিত হয়, যা lower এর মানের উপর নির্ভর করে। অন্য ত্রিভুজ থেকে মান উপেক্ষা করা হয়। আউটপুট ডেটা একই ত্রিভুজে ফেরত পাঠানো হয়; অন্য ত্রিভুজের মানগুলি বাস্তবায়ন-সংজ্ঞায়িত এবং যেকোনো কিছু হতে পারে।

যদি a 2টির বেশি মাত্রা থাকে, তাহলে a ম্যাট্রিক্সের একটি ব্যাচ হিসেবে বিবেচনা করা হয়, যেখানে গৌণ 2 মাত্রা ছাড়া বাকি সবগুলি ব্যাচ মাত্রা।

যদি a প্রতিসম (হারমিশিয়ান) ধনাত্মক নির্দিষ্ট না হয়, তাহলে ফলাফলটি বাস্তবায়ন-সংজ্ঞায়িত।

StableHLO তথ্যের জন্য StableHLO - cholesky দেখুন।

ক্ল্যাম্প

আরও দেখুন XlaBuilder::Clamp

একটি অপারেন্ডকে সর্বনিম্ন এবং সর্বোচ্চ মানের মধ্যে ক্ল্যাম্প করে।

Clamp(min, operand, max)

যুক্তি আদর্শ শব্দার্থবিদ্যা
min XlaOp T ধরণের অ্যারে
operand XlaOp T ধরণের অ্যারে
max XlaOp T ধরণের অ্যারে

একটি অপারেন্ড এবং সর্বনিম্ন এবং সর্বোচ্চ মান দেওয়া হলে, অপারেন্ডটি সর্বনিম্ন এবং সর্বোচ্চের মধ্যে থাকলে তা ফেরত দেয়, অন্যথায় যদি অপারেন্ডটি এই পরিসরের নীচে থাকে তবে সর্বনিম্ন মান ফেরত দেয় অথবা যদি অপারেন্ডটি এই পরিসরের উপরে থাকে তবে সর্বাধিক মান ফেরত দেয়। অর্থাৎ, clamp(a, x, b) = min(max(a, x), b)

তিনটি অ্যারে অবশ্যই একই আকৃতির হতে হবে। বিকল্পভাবে, সম্প্রচারের একটি সীমাবদ্ধ রূপ হিসেবে, min এবং/অথবা max T ধরণের একটি স্কেলার হতে পারে।

স্কেলার min এবং max সহ উদাহরণ:

let operand: s32[3] = {-1, 5, 9};
let min: s32 = 0;
let max: s32 = 6;
==>
Clamp(min, operand, max) = s32[3]{0, 5, 6};

StableHLO তথ্যের জন্য StableHLO - ক্ল্যাম্প দেখুন।

সঙ্কুচিত করুন

আরও দেখুন XlaBuilder::Collapse . এবং tf.reshape অপারেশন।

একটি অ্যারের মাত্রাগুলিকে এক মাত্রায় সঙ্কুচিত করে।

Collapse(operand, dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp T ধরণের অ্যারে
dimensions int64 ভেক্টর T এর মাত্রার ধারাবাহিক উপসেট, ক্রমানুসারে।

Collapse অপারেন্ডের মাত্রার প্রদত্ত উপসেটকে একটি একক মাত্রা দ্বারা প্রতিস্থাপন করে। ইনপুট আর্গুমেন্টগুলি হল T ধরণের একটি ইচ্ছাকৃত অ্যারে এবং মাত্রা সূচকগুলির একটি কম্পাইল-টাইম-কনস্ট্যান্ট ভেক্টর। মাত্রা সূচকগুলি অবশ্যই একটি ইন-অর্ডার (নিম্ন থেকে উচ্চ মাত্রা সংখ্যা), T এর মাত্রার ধারাবাহিক উপসেট হতে হবে। সুতরাং, {0, 1, 2}, {0, 1}, অথবা {1, 2} সকল বৈধ মাত্রা সেট, কিন্তু {1, 0} অথবা {0, 2} নয়। এগুলি একটি নতুন মাত্রা দ্বারা প্রতিস্থাপিত হয়, যে মাত্রা ক্রমগুলি তারা প্রতিস্থাপন করে তার একই অবস্থানে, নতুন মাত্রার আকার মূল মাত্রার আকারের গুণফলের সমান। dimensions সর্বনিম্ন মাত্রা সংখ্যা হল লুপ নেস্টে সবচেয়ে ধীরতম পরিবর্তনশীল মাত্রা (সবচেয়ে প্রধান) যা এই মাত্রাগুলিকে ভেঙে দেয়, এবং সর্বোচ্চ মাত্রা সংখ্যা হল দ্রুততম পরিবর্তনশীল (সবচেয়ে ছোট)। আরও সাধারণ ধীর পরিবর্তনশীল ক্রম প্রয়োজন হলে tf.reshape অপারেটরটি দেখুন।

উদাহরণস্বরূপ, ধরুন v হল 24টি উপাদানের একটি অ্যারে:

let v = f32[4x2x3] { { {10, 11, 12}, {15, 16, 17} },
{ {20, 21, 22}, {25, 26, 27} },
{ {30, 31, 32}, {35, 36, 37} },
{ {40, 41, 42}, {45, 46, 47} } };

// Collapse to a single dimension, leaving one dimension.
let v012 = Collapse(v, {0,1,2});
then v012 == f32[24] {10, 11, 12, 15, 16, 17,
20, 21, 22, 25, 26, 27,
30, 31, 32, 35, 36, 37,
40, 41, 42, 45, 46, 47};

// Collapse the two lower dimensions, leaving two dimensions.
let v01 = Collapse(v, {0,1});
then v01 == f32[4x6] { {10, 11, 12, 15, 16, 17},
{20, 21, 22, 25, 26, 27},
{30, 31, 32, 35, 36, 37},
{40, 41, 42, 45, 46, 47} };

// Collapse the two higher dimensions, leaving two dimensions.
let v12 = Collapse(v, {1,2});
then v12 == f32[8x3] { {10, 11, 12},
{15, 16, 17},
{20, 21, 22},
{25, 26, 27},
{30, 31, 32},
{35, 36, 37},
{40, 41, 42},
{45, 46, 47} };

ক্লজ

আরও দেখুন XlaBuilder::Clz

উপাদান অনুসারে অগ্রবর্তী শূন্য গণনা করুন।

Clz(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp ফাংশনের অপারেন্ড

কালেক্টিভব্রডকাস্ট

আরও দেখুন XlaBuilder::CollectiveBroadcast

রেপ্লিকা জুড়ে ডেটা সম্প্রচার করে। প্রতিটি গ্রুপের প্রথম রেপ্লিকা আইডি থেকে একই গ্রুপের অন্যান্য আইডিতে ডেটা পাঠানো হয়। যদি একটি রেপ্লিকা আইডি কোনও রেপ্লিকা গ্রুপে না থাকে, তাহলে সেই রেপ্লিকার আউটপুট হল 0(s) shape একটি টেনসর।

CollectiveBroadcast(operand, replica_groups, channel_id)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp ফাংশনের অপারেন্ড
replica_groups ReplicaGroup ভেক্টর প্রতিটি গ্রুপে রেপ্লিকা আইডির একটি তালিকা থাকে
channel_id ঐচ্ছিক ChannelHandle প্রতিটি সেন্ড/রেকভি জোড়ার জন্য অনন্য শনাক্তকারী

StableHLO তথ্যের জন্য StableHLO - collective_broadcast দেখুন।

CollectivePermute সম্পর্কে

আরও দেখুন XlaBuilder::CollectivePermute

CollectivePermute হলো একটি যৌথ অপারেশন যা প্রতিলিপি জুড়ে ডেটা প্রেরণ এবং গ্রহণ করে।

CollectivePermute(operand, source_target_pairs, channel_id, inplace)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp n মাত্রিক ইনপুট অ্যারে
source_target_pairs <int64, int64> ভেক্টর (source_replica_id, target_replica_id) জোড়ার একটি তালিকা। প্রতিটি জোড়ার জন্য, অপারেন্ডটি সোর্স রেপ্লিকা থেকে টার্গেট রেপ্লিকাতে পাঠানো হয়।
channel_id ঐচ্ছিক ChannelHandle ক্রস-মডিউল যোগাযোগের জন্য ঐচ্ছিক চ্যানেল আইডি
inplace ঐচ্ছিক bool স্থানে বিন্যাস করা উচিত কিনা তা চিহ্নিত করুন

মনে রাখবেন যে source_target_pairs এর উপর নিম্নলিখিত বিধিনিষেধ রয়েছে:

  • যেকোনো দুটি জোড়ার একই লক্ষ্য প্রতিরূপ আইডি থাকা উচিত নয়, এবং তাদের একই উৎস প্রতিরূপ আইডি থাকা উচিত নয়।
  • যদি কোনও জোড়ায় একটি রেপ্লিকা আইডি লক্ষ্যবস্তু না হয়, তাহলে সেই রেপ্লিকার আউটপুটটি ইনপুটের মতো একই আকৃতির 0(s) সমন্বিত একটি টেনসর হবে।

CollectivePermute অপারেশনের API অভ্যন্তরীণভাবে 2টি HLO নির্দেশাবলীতে বিভক্ত ( CollectivePermuteStart এবং CollectivePermuteDone )।

আরও দেখুন HloInstruction::CreateCollectivePermuteStart

CollectivePermuteStart এবং CollectivePermuteDone HLO তে আদিম হিসেবে কাজ করে। এই অপশনগুলি HLO ডাম্পে প্রদর্শিত হতে পারে, কিন্তু এগুলি শেষ ব্যবহারকারীদের দ্বারা ম্যানুয়ালি তৈরি করার উদ্দেশ্যে নয়।

StableHLO তথ্যের জন্য StableHLO - collective_permute দেখুন।

তুলনা করা

আরও দেখুন XlaBuilder::Compare

নিম্নলিখিতগুলির lhs এবং rhs এর উপাদান-ভিত্তিক তুলনা সম্পাদন করে:

সমীকরণ

আরও দেখুন XlaBuilder::Eq

Performs element-wise equal-to comparison of lhs and rhs .

\(lhs = rhs\)

Eq(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Eq:

Eq(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

Support a total order over the floating point numbers exists for Eq, by enforcing:

\[-NaN < -Inf < -Finite < -0 < +0 < +Finite < +Inf < +NaN.\]

EqTotalOrder(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

For StableHLO information see StableHLO - compare .

নে

See also XlaBuilder::Ne .

Performs element-wise not equal-to comparison of lhs and rhs .

\(lhs != rhs\)

Ne(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Ne:

Ne(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

Support a total order over the floating point numbers exists for Ne, by enforcing:

\[-NaN < -Inf < -Finite < -0 < +0 < +Finite < +Inf < +NaN.\]

NeTotalOrder(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

For StableHLO information see StableHLO - compare .

জিই

See also XlaBuilder::Ge .

Performs element-wise greater-or-equal-than comparison of lhs and rhs .

\(lhs >= rhs\)

Ge(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Ge:

Ge(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

Support a total order over the floating point numbers exists for Gt, by enforcing:

\[-NaN < -Inf < -Finite < -0 < +0 < +Finite < +Inf < +NaN.\]

GtTotalOrder(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

For StableHLO information see StableHLO - compare .

Gt

See also XlaBuilder::Gt .

Performs element-wise greater-than comparison of lhs and rhs .

\(lhs > rhs\)

Gt(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Gt:

Gt(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - compare .

লে

See also XlaBuilder::Le .

Performs element-wise less-or-equal-than comparison of lhs and rhs .

\(lhs <= rhs\)

Le(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Le:

Le(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

Support a total order over the floating point numbers exists for Le, by enforcing:

\[-NaN < -Inf < -Finite < -0 < +0 < +Finite < +Inf < +NaN.\]

LeTotalOrder(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

For StableHLO information see StableHLO - compare .

Lt

See also XlaBuilder::Lt .

Performs element-wise less-than comparison of lhs and rhs .

\(lhs < rhs\)

Lt(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Lt:

Lt(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

Support a total order over the floating point numbers exists for Lt, by enforcing:

\[-NaN < -Inf < -Finite < -0 < +0 < +Finite < +Inf < +NaN.\]

LtTotalOrder(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

For StableHLO information see StableHLO - compare .

Complex

See also XlaBuilder::Complex .

Performs element-wise conversion to a complex value from a pair of real and imaginary values, lhs and rhs .

Complex(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Complex:

Complex(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - complex .

ConcatInDim (Concatenate)

See also XlaBuilder::ConcatInDim .

Concatenate composes an array from multiple array operands. The array has the same number of dimensions as each of the input array operands (which must have the same number of dimensions as each other) and contains the arguments in the order that they were specified.

Concatenate(operands..., dimension)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operands sequence of N XlaOp N arrays of type T with dimensions [L0, L1, ...]. Requires N >= 1.
dimension int64 A value in the interval [0, N) that names the dimension to be concatenated between the operands .

With the exception of dimension all dimensions must be the same. This is because XLA does not support "ragged" arrays. Also note that 0-dimensional values cannot be concatenated (as it's impossible to name the dimension along which the concatenation occurs).

1-dimensional example:

Concat({ {2, 3}, {4, 5}, {6, 7} }, 0)
//Output:  {2, 3, 4, 5, 6, 7}

2-dimensional example:

let a = { {1, 2},
         {3, 4},
         {5, 6} };

let b = { {7, 8} };

Concat({a, b}, 0)

//Output:  { {1, 2},
//          {3, 4},
//          {5, 6},
//          {7, 8} }

Diagram:

For StableHLO information see StableHLO - concatenate .

শর্তসাপেক্ষ

See also XlaBuilder::Conditional .

Conditional(predicate, true_operand, true_computation, false_operand, false_computation)

যুক্তি আদর্শ শব্দার্থবিদ্যা
predicate XlaOp Scalar of type PRED
true_operand XlaOp Argument of type \(T_0\)
true_computation XlaComputation XlaComputation of type \(T_0 \to S\)
false_operand XlaOp Argument of type \(T_1\)
false_computation XlaComputation XlaComputation of type \(T_1 \to S\)

Executes true_computation if predicate is true , false_computation if predicate is false , and returns the result.

The true_computation must take in a single argument of type \(T_0\) and will be invoked with true_operand which must be of the same type. The false_computation must take in a single argument of type \(T_1\) and will be invoked with false_operand which must be of the same type. The type of the returned value of true_computation and false_computation must be the same.

Note that only one of true_computation and false_computation will be executed depending on the value of predicate .

Conditional(branch_index, branch_computations, branch_operands)

যুক্তি আদর্শ শব্দার্থবিদ্যা
branch_index XlaOp Scalar of type S32
branch_computations sequence of N XlaComputation XlaComputations of type \(T_0 \to S , T_1 \to S , ..., T_{N-1} \to S\)
branch_operands sequence of N XlaOp Arguments of type \(T_0 , T_1 , ..., T_{N-1}\)

Executes branch_computations[branch_index] , and returns the result. If branch_index is an S32 which is < 0 or >= N, then branch_computations[N-1] is executed as the default branch.

Each branch_computations[b] must take in a single argument of type \(T_b\) and will be invoked with branch_operands[b] which must be of the same type. The type of the returned value of each branch_computations[b] must be the same.

Note that only one of the branch_computations will be executed depending on the value of branch_index .

For StableHLO information see StableHLO - if .

ধ্রুবক

See also XlaBuilder::ConstantLiteral .

Produces an output from a constant literal .

Constant(literal)

যুক্তি আদর্শ শব্দার্থবিদ্যা
literal LiteralSlice constant view of an existing Literal

For StableHLO information see StableHLO - constant .

ConvertElementType

See also XlaBuilder::ConvertElementType .

Similar to an element-wise static_cast in C++, ConvertElementType performs an element-wise conversion operation from a data shape to a target shape. The dimensions must match, and the conversion is an element-wise one; eg s32 elements become f32 elements via an s32 -to- f32 conversion routine.

ConvertElementType(operand, new_element_type)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp array of type T with dims D
new_element_type PrimitiveType type U

The dimensions of the operand and the target shape must match. The source and destination element types must not be tuples.

A conversion such as T=s32 to U=f32 will perform a normalizing int-to-float conversion routine such as round-to-nearest-even.

let a: s32[3] = {0, 1, 2};
let b: f32[3] = convert(a, f32);
then b == f32[3]{0.0, 1.0, 2.0}

For StableHLO information see StableHLO - convert .

Conv (Convolution)

See also XlaBuilder::Conv .

Computes a convolution of the kind used in neural networks. Here, a convolution can be thought of as a n-dimensional window moving across a n-dimensional base area and a computation is performed for each possible position of the window.

Conv Enqueues a convolution instruction onto the computation, which uses the default convolution dimension numbers with no dilation.

The padding is specified in a short-hand way as either SAME or VALID. SAME padding pads the input ( lhs ) with zeroes so that the output has the same shape as the input when not taking striding into account. VALID padding simply means no padding.

Conv(lhs, rhs, window_strides, padding, feature_group_count, batch_group_count, precision_config, preferred_element_type)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp (n+2)-dimensional array of inputs
rhs XlaOp (n+2)-dimensional array of kernel weights
window_strides ArraySlice<int64> nd array of kernel strides
padding Padding enum of padding
feature_group_count int64 the number of feature groups
batch_group_count int64 the number of batch groups
precision_config optional PrecisionConfig enum for level of precision
preferred_element_type optional PrimitiveType enum of scalar element type

Increasing levels of controls are available for Conv :

Let n be the number of spatial dimensions. The lhs argument is an (n+2)-dimensional array describing the base area. This is called the input, even though of course the rhs is also an input. In a neural network, these are the input activations. The n+2 dimensions are, in this order:

  • batch : Each coordinate in this dimension represents an independent input for which convolution is carried out.
  • z/depth/features : Each (y,x) position in the base area has a vector associated to it, which goes into this dimension.
  • spatial_dims : Describes the n spatial dimensions that define the base area that the window moves across.

The rhs argument is an (n+2)-dimensional array describing the convolutional filter/kernel/window. The dimensions are, in this order:

  • output-z : The z dimension of the output.
  • input-z : The size of this dimension times feature_group_count should equal the size of the z dimension in lhs.
  • spatial_dims : Describes the n spatial dimensions that define the nd window that moves across the base area.

The window_strides argument specifies the stride of the convolutional window in the spatial dimensions. For example, if the stride in the first spatial dimension is 3, then the window can only be placed at coordinates where the first spatial index is divisible by 3.

The padding argument specifies the amount of zero padding to be applied to the base area. The amount of padding can be negative -- the absolute value of negative padding indicates the number of elements to remove from the specified dimension before doing the convolution. padding[0] specifies the padding for dimension y and padding[1] specifies the padding for dimension x . Each pair has the low padding as the first element and the high padding as the second element. The low padding is applied in the direction of lower indices while the high padding is applied in the direction of higher indices. For example, if padding[1] is (2,3) then there will be a padding by 2 zeroes on the left and by 3 zeroes on the right in the second spatial dimension. Using padding is equivalent to inserting those same zero values into the input ( lhs ) before doing the convolution.

The lhs_dilation and rhs_dilation arguments specify the dilation factor to be applied to the lhs and rhs, respectively, in each spatial dimension. If the dilation factor in a spatial dimension is d, then d-1 holes are implicitly placed between each of the entries in that dimension, increasing the size of the array. The holes are filled with a no-op value, which for convolution means zeroes.

Dilation of the rhs is also called atrous convolution. For more details, see tf.nn.atrous_conv2d . Dilation of the lhs is also called transposed convolution. For more details, see tf.nn.conv2d_transpose .

The feature_group_count argument (default value 1) can be used for grouped convolutions. feature_group_count needs to be a divisor of both the input and the output feature dimension. If feature_group_count is greater than 1, it means that conceptually the input and output feature dimension and the rhs output feature dimension are split evenly into many feature_group_count groups, each group consisting of a consecutive subsequence of features. The input feature dimension of rhs needs to be equal to the lhs input feature dimension divided by feature_group_count (so it already has the size of a group of input features). The i-th groups are used together to compute feature_group_count for many separate convolutions. The results of these convolutions are concatenated together in the output feature dimension.

For depthwise convolution the feature_group_count argument would be set to the input feature dimension, and the filter would be reshaped from [filter_height, filter_width, in_channels, channel_multiplier] to [filter_height, filter_width, 1, in_channels * channel_multiplier] . For more details, see tf.nn.depthwise_conv2d .

The batch_group_count (default value 1) argument can be used for grouped filters during backpropagation. batch_group_count needs to be a divisor of the size of the lhs (input) batch dimension. If batch_group_count is greater than 1, it means that the output batch dimension should be of size input batch / batch_group_count . The batch_group_count must be a divisor of the output feature size.

The output shape has these dimensions, in this order:

  • batch : The size of this dimension times batch_group_count should equal the size of the batch dimension in lhs.
  • z : Same size as output-z on the kernel ( rhs ).
  • spatial_dims : One value for each valid placement of the convolutional window.

The figure above shows how the batch_group_count field works. Effectively, we slice each lhs batch into batch_group_count groups, and do the same for the output features. Then, for each of these groups we do pairwise convolutions and concatenate the output along the output feature dimension. The operational semantics of all the other dimensions (feature and spatial) remain the same.

The valid placements of the convolutional window are determined by the strides and the size of the base area after padding.

To describe what a convolution does, consider a 2d convolution, and pick some fixed batch , z , y , x coordinates in the output. Then (y,x) is a position of a corner of the window within the base area (eg the upper left corner, depending on how you interpret the spatial dimensions). We now have a 2d window, taken from the base area, where each 2d point is associated to a 1d vector, so we get a 3d box. From the convolutional kernel, since we fixed the output coordinate z , we also have a 3d box. The two boxes have the same dimensions, so we can take the sum of the element-wise products between the two boxes (similar to a dot product). That is the output value.

Note that if output-z is eg, 5, then each position of the window produces 5 values in the output into the z dimension of the output. These values differ in what part of the convolutional kernel is used - there is a separate 3d box of values used for each output-z coordinate. So you could think of it as 5 separate convolutions with a different filter for each of them.

Here is pseudo-code for a 2d convolution with padding and striding:

for (b, oz, oy, ox) { // output coordinates
  value = 0;
  for (iz, ky, kx) { // kernel coordinates and input z
    iy = oy*stride_y + ky - pad_low_y;
    ix = ox*stride_x + kx - pad_low_x;
    if ((iy, ix) inside the base area considered without padding) {
      value += input(b, iz, iy, ix) * kernel(oz, iz, ky, kx);
    }
  }
  output(b, oz, oy, ox) = value;
}

precision_config is used to indicate the precision configuration. The level dictates whether hardware should attempt to generate more machine code instructions to provide more accurate dtype emulation when needed (ie emulating f32 on a TPU that only supports bf16 matmuls). Values may be DEFAULT , HIGH , HIGHEST . Additional details in the MXU sections .

preferred_element_type is a scalar element of higher/lower precision output types used for accumulation. preferred_element_type recommends the accumulation type for the given operation, however it is not guaranteed. This allows for some hardware backends to instead accumulate in a different type and convert to the preferred output type.

For StableHLO information see StableHLO - convolution .

ConvWithGeneralPadding

See also XlaBuilder::ConvWithGeneralPadding .

ConvWithGeneralPadding(lhs, rhs, window_strides, padding, feature_group_count, batch_group_count, precision_config, preferred_element_type)

Same as Conv where padding configuration is explicit.

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp (n+2)-dimensional array of inputs
rhs XlaOp (n+2)-dimensional array of kernel weights
window_strides ArraySlice<int64> nd array of kernel strides
padding ArraySlice< pair<int64,int64>> nd array of (low, high) padding
feature_group_count int64 the number of feature groups
batch_group_count int64 the number of batch groups
precision_config optional PrecisionConfig enum for level of precision
preferred_element_type optional PrimitiveType enum of scalar element type

ConvWithGeneralDimensions

See also XlaBuilder::ConvWithGeneralDimensions .

ConvWithGeneralDimensions(lhs, rhs, window_strides, padding, dimension_numbers, feature_group_count, batch_group_count, precision_config, preferred_element_type)

Same as Conv where dimension numbers are explicit.

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp (n+2)-dimensional array of inputs
rhs XlaOp (n+2)-dimensional array of kernel weights
window_strides ArraySlice<int64> nd array of kernel strides
padding Padding enum of padding
dimension_numbers ConvolutionDimensionNumbers the number of dimensions
feature_group_count int64 the number of feature groups
batch_group_count int64 the number of batch groups
precision_config optional PrecisionConfig enum for level of precision
preferred_element_type optional PrimitiveType enum of scalar element type

ConvGeneral

See also XlaBuilder::ConvGeneral .

ConvGeneral(lhs, rhs, window_strides, padding, dimension_numbers, feature_group_count, batch_group_count, precision_config, preferred_element_type)

Same as Conv where dimension numbers and padding configuration is explicit

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp (n+2)-dimensional array of inputs
rhs XlaOp (n+2)-dimensional array of kernel weights
window_strides ArraySlice<int64> nd array of kernel strides
padding ArraySlice< pair<int64,int64>> nd array of (low, high) padding
dimension_numbers ConvolutionDimensionNumbers the number of dimensions
feature_group_count int64 the number of feature groups
batch_group_count int64 the number of batch groups
precision_config optional PrecisionConfig enum for level of precision
preferred_element_type optional PrimitiveType enum of scalar element type

ConvGeneralDilated

See also XlaBuilder::ConvGeneralDilated .

ConvGeneralDilated(lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config, preferred_element_type, window_reversal)

Same as Conv where padding configuration, dilation factors, and dimension numbers are explicit.

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp (n+2)-dimensional array of inputs
rhs XlaOp (n+2)-dimensional array of kernel weights
window_strides ArraySlice<int64> nd array of kernel strides
padding ArraySlice< pair<int64,int64>> nd array of (low, high) padding
lhs_dilation ArraySlice<int64> nd lhs dilation factor array
rhs_dilation ArraySlice<int64> nd rhs dilation factor array
dimension_numbers ConvolutionDimensionNumbers the number of dimensions
feature_group_count int64 the number of feature groups
batch_group_count int64 the number of batch groups
precision_config optional PrecisionConfig enum for level of precision
preferred_element_type optional PrimitiveType enum of scalar element type
window_reversal optional vector<bool> flag used to logically reverse dimension before applying the convolution

কপি

See also HloInstruction::CreateCopyStart .

Copy is internally decomposed into 2 HLO instructions CopyStart and CopyDone . Copy along with CopyStart and CopyDone serve as primitives in HLO. These ops may appear in HLO dumps, but they are not intended to be constructed manually by end users.

কোস

See also XlaBuilder::Cos .

Element-wise cosine x -> cos(x) .

Cos(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

Cos also supports the optional result_accuracy argument:

Cos(operand, result_accuracy)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

For StableHLO information see StableHLO - cosine .

Cosh

See also XlaBuilder::Cosh .

Element-wise hyperbolic cosine x -> cosh(x) .

Cosh(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

Cosh also supports the optional result_accuracy argument:

Cosh(operand, result_accuracy)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

CustomCall

See also XlaBuilder::CustomCall .

Call a user-provided function within a computation.

CustomCall documentation is provided in Developer details - XLA Custom Calls

For StableHLO information see StableHLO - custom_call .

বিভাগ

See also XlaBuilder::Div .

Performs element-wise division of dividend lhs and divisor rhs .

Div(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

Integer division overflow (signed/unsigned division/remainder by zero or signed division/remainder of INT_SMIN with -1 ) produces an implementation defined value.

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Div:

Div(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - divide .

ডোমেইন

See also HloInstruction::CreateDomain .

Domain may appear in HLO dumps, but it is not intended to be constructed manually by end users.

Dot

See also XlaBuilder::Dot .

Dot(lhs, rhs, precision_config, preferred_element_type)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp array of type T
rhs XlaOp array of type T
precision_config optional PrecisionConfig enum for level of precision
preferred_element_type optional PrimitiveType enum of scalar element type

The exact semantics of this operation depend on the ranks of the operands:

ইনপুট আউটপুট শব্দার্থবিদ্যা
vector [n] dot vector [n] scalar vector dot product
matrix [mxk] dot vector [k] vector [m] matrix-vector multiplication
matrix [mxk] dot matrix [kxn] matrix [mxn] matrix-matrix multiplication

The operation performs sum of products over the second dimension of lhs (or the first if it has 1 dimension) and the first dimension of rhs . These are the "contracted" dimensions. The contracted dimensions of lhs and rhs must be of the same size. In practice, it can be used to perform dot products between vectors, vector/matrix multiplications or matrix/matrix multiplications.

precision_config is used to indicate the precision configuration. The level dictates whether hardware should attempt to generate more machine code instructions to provide more accurate dtype emulation when needed (ie emulating f32 on a TPU that only supports bf16 matmuls). Values may be DEFAULT , HIGH , HIGHEST . Additional details in the MXU sections .

preferred_element_type is a scalar element of higher/lower precision output types used for accumulation. preferred_element_type recommends the accumulation type for the given operation, however it is not guaranteed. This allows for some hardware backends to instead accumulate in a different type and convert to the preferred output type.

For StableHLO information see StableHLO - dot .

DotGeneral

See also XlaBuilder::DotGeneral .

DotGeneral(lhs, rhs, dimension_numbers, precision_config, preferred_element_type)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp array of type T
rhs XlaOp array of type T
dimension_numbers DotDimensionNumbers contracting and batch dimension numbers
precision_config optional PrecisionConfig enum for level of precision
preferred_element_type optional PrimitiveType enum of scalar element type

Similar to Dot, but allows contracting and batch dimension numbers to be specified for both the lhs and rhs .

DotDimensionNumbers Fields আদর্শ শব্দার্থবিদ্যা
lhs_contracting_dimensions repeated int64 lhs contracting dimension numbers
rhs_contracting_dimensions repeated int64 rhs contracting dimension numbers
lhs_batch_dimensions repeated int64 lhs batch dimension numbers
rhs_batch_dimensions repeated int64 rhs batch dimension numbers

DotGeneral performs the sum of products over contracting dimensions specified in dimension_numbers .

Associated contracting dimension numbers from the lhs and rhs do not need to be the same but must have the same dimension sizes.

Example with contracting dimension numbers:

lhs = { {1.0, 2.0, 3.0},
        {4.0, 5.0, 6.0} }

rhs = { {1.0, 1.0, 1.0},
        {2.0, 2.0, 2.0} }

DotDimensionNumbers dnums;
dnums.add_lhs_contracting_dimensions(1);
dnums.add_rhs_contracting_dimensions(1);

DotGeneral(lhs, rhs, dnums) -> { { 6.0, 12.0},
                                 {15.0, 30.0} }

Associated batch dimension numbers from the lhs and rhs must have the same dimension sizes.

Example with batch dimension numbers (batch size 2, 2x2 matrices):

lhs = { { {1.0, 2.0},
          {3.0, 4.0} },
        { {5.0, 6.0},
          {7.0, 8.0} } }

rhs = { { {1.0, 0.0},
          {0.0, 1.0} },
        { {1.0, 0.0},
          {0.0, 1.0} } }

DotDimensionNumbers dnums;
dnums.add_lhs_contracting_dimensions(2);
dnums.add_rhs_contracting_dimensions(1);
dnums.add_lhs_batch_dimensions(0);
dnums.add_rhs_batch_dimensions(0);

DotGeneral(lhs, rhs, dnums) -> {
    { {1.0, 2.0},
      {3.0, 4.0} },
    { {5.0, 6.0},
      {7.0, 8.0} } }
ইনপুট আউটপুট শব্দার্থবিদ্যা
[b0, m, k] dot [b0, k, n] [b0, m, n] batch matmul
[b0, b1, m, k] dot [b0, b1, k, n] [b0, b1, m, n] batch matmul

It follows that the resulting dimension number starts with the batch dimension, then the lhs non-contracting/non-batch dimension, and finally the rhs non-contracting/non-batch dimension.

precision_config is used to indicate the precision configuration. The level dictates whether hardware should attempt to generate more machine code instructions to provide more accurate dtype emulation when needed (ie emulating f32 on a TPU that only supports bf16 matmuls). Values may be DEFAULT , HIGH , HIGHEST . Additional details can be found in the MXU sections .

preferred_element_type is a scalar element of higher/lower precision output types used for accumulation. preferred_element_type recommends the accumulation type for the given operation, however it is not guaranteed. This allows for some hardware backends to instead accumulate in a different type and convert to the preferred output type.

For StableHLO information see StableHLO - dot_general .

ScaledDot

See also XlaBuilder::ScaledDot .

ScaledDot(lhs, lhs_scale, rhs, rhs_scale, dimension_number, precision_config,preferred_element_type)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp array of type T
rhs XlaOp array of type T
lhs_scale XlaOp array of type T
rhs_scale XlaOp array of type T
dimension_number ScatterDimensionNumbers Dimension numbers for scatter operation
precision_config PrecisionConfig enum for level of precision
preferred_element_type optional PrimitiveType enum of scalar element type

Similar to DotGeneral .

Creates a scaled dot op with operands 'lhs', 'lhs_scale', 'rhs', and 'rhs_scale', with contracting and batch dimensions specified in 'dimension_numbers'.

RaggedDot

See also XlaBuilder::RaggedDot .

For a breakdown of RaggedDot computation see StableHLO - chlo.ragged_dot

DynamicReshape

See also XlaBuilder::DynamicReshape .

This operation is functionally identical to reshape , but the result shape is specified dynamically via output_shape.

DynamicReshape(operand, dim_sizes, new_size_bounds, dims_are_dynamic)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp N dimensional array of type T
dim_sizes vector of XlaOP N dimensional vector sizes
new_size_bounds vector of int63 N dimensional vector of bounds
dims_are_dynamic vector of bool N dimensional dynamic dim

For StableHLO information see StableHLO - dynamic_reshape .

DynamicSlice

See also XlaBuilder::DynamicSlice .

DynamicSlice extracts a sub-array from the input array at dynamic start_indices . The size of the slice in each dimension is passed in size_indices , which specify the end point of exclusive slice intervals in each dimension: [start, start + size). The shape of start_indices must be 1-dimensional, with dimension size equal to the number of dimensions of operand .

DynamicSlice(operand, start_indices, slice_sizes)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp N dimensional array of type T
start_indices sequence of N XlaOp List of N scalar integers containing the starting indices of the slice for each dimension. Value must be greater than or equal to zero.
size_indices ArraySlice<int64> List of N integers containing the slice size for each dimension. Each value must be strictly greater than zero, and start + size must be less than or equal to the size of the dimension to avoid wrapping modulo dimension size.

The effective slice indices are computed by applying the following transformation for each index i in [1, N) before performing the slice:

start_indices[i] = clamp(start_indices[i], 0, operand.dimension_size[i] - slice_sizes[i])

This ensures that the extracted slice is always in-bounds with respect to the operand array. If the slice is in-bounds before the transformation is applied, the transformation has no effect.

1-dimensional example:

let a = {0.0, 1.0, 2.0, 3.0, 4.0};
let s = {2};

DynamicSlice(a, s, {2});
// Result: {2.0, 3.0}

2-dimensional example:

let b =
{ {0.0,  1.0,  2.0},
  {3.0,  4.0,  5.0},
  {6.0,  7.0,  8.0},
  {9.0, 10.0, 11.0} }
let s = {2, 1}

DynamicSlice(b, s, {2, 2});
//Result:
// { { 7.0,  8.0},
//   {10.0, 11.0} }

For StableHLO information see StableHLO - dynamic_slice .

DynamicUpdateSlice

See also XlaBuilder::DynamicUpdateSlice .

DynamicUpdateSlice generates a result which is the value of the input array operand , with a slice update overwritten at start_indices . The shape of update determines the shape of the sub-array of the result which is updated. The shape of start_indices must be 1-dimensional, with dimension size equal to the number of dimensions of operand .

DynamicUpdateSlice(operand, update, start_indices)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp N dimensional array of type T
update XlaOp N dimensional array of type T containing the slice update. Each dimension of update shape must be strictly greater than zero, and start + update must be less than or equal to the operand size for each dimension to avoid generating out-of-bounds update indices.
start_indices sequence of N XlaOp List of N scalar integers containing the starting indices of the slice for each dimension. Value must be greater than or equal to zero.

The effective slice indices are computed by applying the following transformation for each index i in [1, N) before performing the slice:

start_indices[i] = clamp(start_indices[i], 0, operand.dimension_size[i] - update.dimension_size[i])

This ensures that the updated slice is always in-bounds with respect to the operand array. If the slice is in-bounds before the transformation is applied, the transformation has no effect.

1-dimensional example:

let a = {0.0, 1.0, 2.0, 3.0, 4.0}
let u = {5.0, 6.0}
let s = {2}

DynamicUpdateSlice(a, u, s)
// Result: {0.0, 1.0, 5.0, 6.0, 4.0}

2-dimensional example:

let b =
{ {0.0,  1.0,  2.0},
  {3.0,  4.0,  5.0},
  {6.0,  7.0,  8.0},
  {9.0, 10.0, 11.0} }
let u =
{ {12.0, 13.0},
  {14.0, 15.0},
  {16.0, 17.0} }

let s = {1, 1}

DynamicUpdateSlice(b, u, s)
// Result:
// { {0.0,  1.0,  2.0},
//   {3.0, 12.0, 13.0},
//   {6.0, 14.0, 15.0},
//   {9.0, 16.0, 17.0} }

For StableHLO information see StableHLO - dynamic_update_slice .

Erf

See also XlaBuilder::Erf .

Element-wise error function x -> erf(x) where:

\(\text{erf}(x) = \frac{2}{\sqrt{\pi} }\int_0^x e^{-t^2} \, dt\).

Erf(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

Erf also supports the optional result_accuracy argument:

Erf(operand, result_accuracy)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

মেয়াদ শেষ

See also XlaBuilder::Exp .

Element-wise natural exponential x -> e^x .

Exp(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

Exp also supports the optional result_accuracy argument:

Exp(operand, result_accuracy)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

For StableHLO information see StableHLO - exponential .

Expm1

See also XlaBuilder::Expm1 .

Element-wise natural exponential minus one x -> e^x - 1 .

Expm1(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

Expm1 also supports the optional result_accuracy argument:

Expm1(operand, result_accuracy)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

For StableHLO information see StableHLO - exponential_minus_one .

Fft

See also XlaBuilder::Fft .

The XLA FFT operation implements the forward and inverse Fourier Transforms for real and complex inputs/outputs. Multidimensional FFTs on up to 3 axes are supported.

Fft(operand, ftt_type, fft_length)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The array we are Fourier transforming.
fft_type FftType See the table below.
fft_length ArraySlice<int64> The time-domain lengths of the axes being transformed. This is needed in particular for IRFFT to right-size the innermost axis, since RFFT(fft_length=[16]) has the same output shape as RFFT(fft_length=[17]) .
FftType শব্দার্থবিদ্যা
FFT Forward complex-to-complex FFT. Shape is unchanged.
IFFT Inverse complex-to-complex FFT. Shape is unchanged.
RFFT Forward real-to-complex FFT. Shape of the innermost axis is reduced to fft_length[-1] // 2 + 1 if fft_length[-1] is a non-zero value, omitting the reversed conjugate part of the transformed signal beyond the Nyquist frequency.
IRFFT Inverse real-to-complex FFT (ie takes complex, returns real). Shape of the innermost axis is expanded to fft_length[-1] if fft_length[-1] is a non-zero value, inferring the part of the transformed signal beyond the Nyquist frequency from the reverse conjugate of the 1 to fft_length[-1] // 2 + 1 entries.

For StableHLO information see StableHLO - fft .

Multidimensional FFT

When more than 1 fft_length is provided, this is equivalent to applying a cascade of FFT operations to each of the innermost axes. Note that for the real->complex and complex->real cases, the innermost axis transform is (effectively) performed first (RFFT; last for IRFFT), which is why the innermost axis is the one which changes size. Other axis transforms will then be complex->complex.

বাস্তবায়নের বিশদ বিবরণ

CPU FFT is backed by Eigen's TensorFFT. GPU FFT uses cuFFT.

মেঝে

See also XlaBuilder::Floor .

Element-wise floor x -> ⌊x⌋ .

Floor(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

For StableHLO information see StableHLO - floor .

ফিউশন

See also HloInstruction::CreateFusion .

Fusion operation represents HLO instructions and serves as a primitive in HLO. This op may appear in HLO dumps but is not intended to be constructed manually by end users.

জড়ো করা

The XLA gather operation stitches together several slices (each slice at a potentially different runtime offset) of an input array.

For StableHLO information see StableHLO - gather .

General Semantics

See also XlaBuilder::Gather . For a more intuitive description, see the "Informal Description" section below.

gather(operand, start_indices, dimension_numbers, slice_sizes, indices_are_sorted)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The array we're gathering from.
start_indices XlaOp Array containing the starting indices of the slices we gather.
dimension_numbers GatherDimensionNumbers The dimension in start_indices that "contains" the starting indices. See below for a detailed description.
slice_sizes ArraySlice<int64> slice_sizes[i] is the bounds for the slice on dimension i .
indices_are_sorted bool Whether the indices are guaranteed to be sorted by the caller.

For convenience, we label dimensions in the output array not in offset_dims as batch_dims .

The output is an array with batch_dims.size + offset_dims.size dimensions.

The operand.rank must equal the sum of offset_dims.size and collapsed_slice_dims.size . Also, slice_sizes.size has to be equal to operand.rank .

If index_vector_dim is equal to start_indices.rank we implicitly consider start_indices to have a trailing 1 dimension (ie if start_indices was of shape [6,7] and index_vector_dim is 2 then we implicitly consider the shape of start_indices to be [6,7,1] ).

The bounds for the output array along dimension i is computed as follows:

  1. If i is present in batch_dims (ie is equal to batch_dims[k] for some k ) then we pick the corresponding dimension bounds out of start_indices.shape , skipping index_vector_dim (ie pick start_indices.shape.dims [ k ] if k < index_vector_dim and start_indices.shape.dims [ k + 1 ] otherwise).

  2. If i is present in offset_dims (ie equal to offset_dims [ k ] for some k ) then we pick the corresponding bound out of slice_sizes after accounting for collapsed_slice_dims (ie we pick adjusted_slice_sizes [ k ] where adjusted_slice_sizes is slice_sizes with the bounds at indices collapsed_slice_dims removed).

Formally, the operand index In corresponding to a given output index Out is calculated as follows:

  1. Let G = { Out [ k ] for k in batch_dims }. Use G to slice out a vector S such that S [ i ] = start_indices [Combine( G , i )] where Combine(A, b) inserts b at position index_vector_dim into A. Note that this is well defined even if G is empty: If G is empty then S = start_indices .

  2. Create a starting index, S in , into operand using S by scattering S using start_index_map . More precisely:

    1. S in [ start_index_map [ k ]] = S [ k ] if k < start_index_map.size .

    2. S in [ _ ] = 0 otherwise.

  3. Create an index O in into operand by scattering the indices at the offset dimensions in Out according to the collapsed_slice_dims set. More precisely:

    1. O in [ remapped_offset_dims ( k )] = Out [ offset_dims [ k ]] if k < offset_dims.size ( remapped_offset_dims is defined below).

    2. O in [ _ ] = 0 otherwise.

  4. In is O in + S in where + is element-wise addition.

remapped_offset_dims is a monotonic function with domain [ 0 , offset_dims.size ) and range [ 0 , operand.rank ) \ collapsed_slice_dims . So if, eg, offset_dims.size is 4 , operand.rank is 6 and collapsed_slice_dims is { 0 , 2 } then remapped_offset_dims is { 01 , 13 , 24 , 35 }.

If indices_are_sorted is set to true then XLA can assume that start_indices are sorted (in ascending order, after scattering its values according to start_index_map ) by the user. If they are not then the semantics are implementation defined.

Informal Description and Examples

Informally, every index Out in the output array corresponds to an element E in the operand array, computed as follows:

  • We use the batch dimensions in Out to look up a starting index from start_indices .

  • We use start_index_map to map the starting index (whose size may be less than operand.rank) to a "full" starting index into the operand .

  • We dynamic-slice out a slice with size slice_sizes using the full starting index.

  • We reshape the slice by collapsing the collapsed_slice_dims dimensions. Since all collapsed slice dimensions must have a bound of 1, this reshape is always legal.

  • We use the offset dimensions in Out to index into this slice to get the input element, E , corresponding to output index Out .

index_vector_dim is set to start_indices.rank - 1 in all of the examples that follow. More interesting values for index_vector_dim do not change the operation fundamentally, but make the visual representation more cumbersome.

To get an intuition on how all of the above fits together, let's look at an example that gathers 5 slices of shape [8,6] from a [16,11] array. The position of a slice into the [16,11] array can be represented as an index vector of shape S64[2] , so the set of 5 positions can be represented as a S64[5,2] array.

The behavior of the gather operation can then be depicted as an index transformation that takes [ G , O 0 , O 1 ], an index in the output shape, and maps it to an element in the input array in the following way:

We first select an ( X , Y ) vector from the gather indices array using G . The element in the output array at index [ G , O 0 , O 1 ] is then the element in the input array at index [ X + O 0 , Y + O 1 ].

slice_sizes is [8,6] , which decides the range of O 0 and O 1 , and this in turn decides the bounds of the slice.

This gather operation acts as a batch dynamic slice with G as the batch dimension.

The gather indices may be multidimensional. For instance, a more general version of the example above using a "gather indices" array of shape [4,5,2] would translate indices like this:

Again, this acts as a batch dynamic slice G 0 and G 1 as the batch dimensions. The slice size is still [8,6] .

The gather operation in XLA generalizes the informal semantics outlined above in the following ways:

  1. We can configure which dimensions in the output shape are the offset dimensions (dimensions containing O 0 , O 1 in the last example). The output batch dimensions (dimensions containing G 0 , G 1 in the last example) are defined to be the output dimensions that are not offset dimensions.

  2. The number of output offset dimensions explicitly present in the output shape may be smaller than the input number of dimensions. These "missing" dimensions, which are listed explicitly as collapsed_slice_dims , must have a slice size of 1 . Since they have a slice size of 1 the only valid index for them is 0 and eliding them does not introduce ambiguity.

  3. The slice extracted from the "Gather Indices" array (( X , Y ) in the last example) may have fewer elements than the input array's number of dimensions, and an explicit mapping dictates how the index should be expanded to have the same number of dimensions as the input.

As a final example, we use (2) and (3) to implement tf.gather_nd :

G 0 and G 1 are used to slice out a starting index from the gather indices array as usual, except the starting index has only one element, X . Similarly, there is only one output offset index with the value O 0 . However, before being used as indices into the input array, these are expanded in accordance to "Gather Index Mapping" ( start_index_map in the formal description) and "Offset Mapping" ( remapped_offset_dims in the formal description) into [ X , 0 ] and [ 0 , O 0 ] respectively, adding up to [ X , O 0 ]. In other words, the output index [ G 0 , G 1 , O 0 ] maps to the input index [ GatherIndices [ G 0 , G 1 , 0 ], O 0 ] which gives us the semantics for tf.gather_nd .

slice_sizes for this case is [1,11] . Intuitively this means that every index X in the gather indices array picks an entire row and the result is the concatenation of all these rows.

GetDimensionSize

See also XlaBuilder::GetDimensionSize .

Returns the size of the given dimension of the operand. The operand must be array shaped.

GetDimensionSize(operand, dimension)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp n dimensional input array
dimension int64 A value in the interval [0, n) that specifies the dimension

For StableHLO information see StableHLO - get_dimension_size .

GetTupleElement

See also XlaBuilder::GetTupleElement .

Indexes into a tuple with a compile-time-constant value.

The value must be a compile-time-constant so that shape inference can determine the type of the resulting value.

This is analogous to std::get<int N>(t) in C++. Conceptually:

let v: f32[10] = f32[10]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
let s: s32 = 5;
let t: (f32[10], s32) = tuple(v, s);
let element_1: s32 = gettupleelement(t, 1); // Inferred shape matches s32.

See also tf.tuple .

GetTupleElement(tuple_data, index)

যুক্তি আদর্শ শব্দার্থবিদ্যা
tuple_data XlaOP The tuple
index int64 Index of tuple shape

For StableHLO information see StableHLO - get_tuple_element .

Imag

See also XlaBuilder::Imag .

Element-wise imaginary part of a complex (or real) shape. x -> imag(x) . If the operand is a floating point type, returns 0.

Imag(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

For StableHLO information see StableHLO - imag .

Infeed

See also XlaBuilder::Infeed .

Infeed(shape, config)

যুক্তি আদর্শ শব্দার্থবিদ্যা
shape Shape Shape of the data read from the Infeed interface. The layout field of the shape must be set to match the layout of the data sent to the device; otherwise its behavior is undefined.
config optional string Configuration of the op.

Reads a single data item from the implicit Infeed streaming interface of the device, interpreting the data as the given shape and its layout, and returns a XlaOp of the data. Multiple Infeed operations are allowed in a computation, but there must be a total order among the Infeed operations. For example, two Infeed 's in the code below have a total order since there is a dependency between the while loops.

result1 = while (condition, init = init_value) {
  Infeed(shape)
  }

result2 = while (condition, init = result1) {
  Infeed(shape)
  }

Nested tuple shapes are not supported. For an empty tuple shape, the Infeed operation is effectively a no-op and proceeds without reading any data from the Infeed of the device.

For StableHLO information see StableHLO - infeed .

Iota

See also XlaBuilder::Iota .

Iota(shape, iota_dimension)

Builds a constant literal on device rather than a potentially large host transfer. Creates an array that has specified shape and holds values starting at zero and incrementing by one along the specified dimension. For floating-point types, the produced array is equivalent to ConvertElementType(Iota(...)) where the Iota is of integral type and the conversion is to the floating-point type.

যুক্তি আদর্শ শব্দার্থবিদ্যা
shape Shape Shape of the array created by Iota()
iota_dimension int64 The dimension to increment along.

For example, Iota(s32[4, 8], 0) returns

[[0, 0, 0, 0, 0, 0, 0, 0 ],
 [1, 1, 1, 1, 1, 1, 1, 1 ],
 [2, 2, 2, 2, 2, 2, 2, 2 ],
 [3, 3, 3, 3, 3, 3, 3, 3 ]]

Iota(s32[4, 8], 1) returns

[[0, 1, 2, 3, 4, 5, 6, 7 ],
 [0, 1, 2, 3, 4, 5, 6, 7 ],
 [0, 1, 2, 3, 4, 5, 6, 7 ],
 [0, 1, 2, 3, 4, 5, 6, 7 ]]

For StableHLO information see StableHLO - iota .

IsFinite

See also XlaBuilder::IsFinite .

Tests whether each element of operand is finite, ie, is not positive or negative infinity, and is not NaN . Returns an array of PRED values with the same shape as the input, where each element is true if and only if the corresponding input element is finite.

IsFinite(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

For StableHLO information see StableHLO - is_finite .

লগ

See also XlaBuilder::Log .

Element-wise natural logarithm x -> ln(x) .

Log(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

Log also supports the optional result_accuracy argument:

Log(operand, result_accuracy)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

For StableHLO information see StableHLO - log .

Log1p

See also XlaBuilder::Log1p .

Element-wise shifted natural logarithm x -> ln(1+x) .

Log1p(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

Log1p also supports the optional result_accuracy argument:

Log1p(operand, result_accuracy)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

For StableHLO information see StableHLO - log_plus_one .

Logistic

See also XlaBuilder::Logistic .

Element-wise logistic function computation x -> logistic(x) .

Logistic(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

Logistic also supports the optional result_accuracy argument:

Logistic(operand, result_accuracy)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

For StableHLO information see StableHLO - logistic .

মানচিত্র

See also XlaBuilder::Map .

Map(operands..., computation, dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operands sequence of N XlaOp s N arrays of types T 0..T {N-1}
computation XlaComputation Computation of type T_0, T_1, .., T_{N + M -1} -> S with N parameters of type T and M of arbitrary type.
dimensions int64 array Array of map dimensions
static_operands sequence of N XlaOp s Static ops for the map operation

Applies a scalar function over the given operands arrays, producing an array of the same dimensions where each element is the result of the mapped function applied to the corresponding elements in the input arrays.

The mapped function is an arbitrary computation with the restriction that it has N inputs of scalar type T and a single output with type S . The output has the same dimensions as the operands except that the element type T is replaced with S.

For example: Map(op1, op2, op3, computation, par1) maps elem_out <- computation(elem1, elem2, elem3, par1) at each (multi-dimensional) index in the input arrays to produce the output array.

For StableHLO information see StableHLO - map .

সর্বোচ্চ

See also XlaBuilder::Max .

Performs element-wise max operation on tensors lhs and rhs .

Max(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Max:

Max(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - maximum .

ন্যূনতম

See also XlaBuilder::Min .

Performs element-wise min operation on lhs and rhs .

Min(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Min:

Min(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - minimum .

মুল

See also XlaBuilder::Mul .

Performs element-wise product of lhs and rhs .

Mul(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Mul:

Mul(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - multiply .

নেতিবাচক

See also XlaBuilder::Neg .

Element-wise negation x -> -x .

Neg(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

For StableHLO information see StableHLO - negate

না

See also XlaBuilder::Not .

Element-wise logical not x -> !(x) .

Not(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

For StableHLO information see StableHLO - not .

OptimizationBarrier

See also XlaBuilder::OptimizationBarrier .

Blocks any optimization pass from moving computations across the barrier.

OptimizationBarrier(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

Ensures that all inputs are evaluated before any operators that depend on the barrier's outputs.

For StableHLO information see StableHLO - optimization_barrier .

অথবা

See also XlaBuilder::Or .

Performs element-wise OR of lhs and rhs .

Or(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Or:

Or(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - or .

Outfeed

See also XlaBuilder::Outfeed .

Writes inputs to the outfeed.

Outfeed(operand, shape_with_layout, outfeed_config)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp array of type T
shape_with_layout Shape Defines the layout of the data transferred
outfeed_config string Constant of config for the Outfeed instruction

shape_with_layout communicates the laid out shape that we want to outfeed.

For StableHLO information see StableHLO - outfeed .

Pad

See also XlaBuilder::Pad .

Pad(operand, padding_value, padding_config)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp array of type T
padding_value XlaOp scalar of type T to fill in the added padding
padding_config PaddingConfig padding amount on both edges (low, high) and between the elements of each dimension

Expands the given operand array by padding around the array as well as between the elements of the array with the given padding_value . padding_config specifies the amount of edge padding and the interior padding for each dimension.

PaddingConfig is a repeated field of PaddingConfigDimension , which contains three fields for each dimension: edge_padding_low , edge_padding_high , and interior_padding .

edge_padding_low and edge_padding_high specify the amount of padding added at the low-end (next to index 0) and the high-end (next to the highest index) of each dimension respectively. The amount of edge padding can be negative -- the absolute value of negative padding indicates the number of elements to remove from the specified dimension.

interior_padding specifies the amount of padding added between any two elements in each dimension; it may not be negative. Interior padding occurs logically before edge padding, so in the case of negative edge padding, elements are removed from the interior-padded operand.

This operation is a no-op if the edge padding pairs are all (0, 0) and the interior padding values are all 0. The figure below shows examples of different edge_padding and interior_padding values for a two-dimensional array.

For StableHLO information see StableHLO - pad .

প্যারামিটার

See also XlaBuilder::Parameter .

Parameter represents an argument input to a computation.

PartitionID

See also XlaBuilder::BuildPartitionId .

Produces partition_id of the current process.

PartitionID(shape)

যুক্তি আদর্শ শব্দার্থবিদ্যা
shape Shape Shape of the data

PartitionID may appear in HLO dumps but it is not intended to be constructed manually by end users.

For StableHLO information see StableHLO - partition_id .

PopulationCount

See also XlaBuilder::PopulationCount .

Computes the number of bits set in each element of operand .

PopulationCount(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

For StableHLO information see StableHLO - popcnt .

Pow

See also XlaBuilder::Pow .

Performs element-wise exponentiation of lhs by rhs .

Pow(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Pow:

Pow(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - power .

বাস্তব

See also XlaBuilder::Real .

Element-wise real part of a complex (or real) shape. x -> real(x) . If the operand is a floating point type, Real returns the same value.

Real(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

For StableHLO information see StableHLO - real .

Recv

See also XlaBuilder::Recv .

Recv , RecvWithTokens , and RecvToHost are operations that serve as communication primitives in HLO. These ops typically appear in HLO dumps as part of low-level input/output or cross-device transfer, but they are not intended to be constructed manually by end users.

Recv(shape, handle)

যুক্তি আদর্শ শব্দার্থবিদ্যা
shape Shape shape of the data to receive
handle ChannelHandle unique identifier for each send/recv pair

Receives data of the given shape from a Send instruction in another computation that shares the same channel handle. Returns a XlaOp for the received data.

For StableHLO information see StableHLO - recv .

RecvDone

See also HloInstruction::CreateRecv and HloInstruction::CreateRecvDone .

Similar to Send , the client API of Recv operation represents synchronous communication. However, the instruction is internally decomposed into 2 HLO instructions ( Recv and RecvDone ) to enable asynchronous data transfers.

Recv(const Shape& shape, int64 channel_id)

Allocates resources required to receive data from a Send instruction with the same channel_id. Returns a context for the allocated resources, which is used by a following RecvDone instruction to wait for the completion of the data transfer. The context is a tuple of {receive buffer (shape), request identifier (U32)} and it can only be used by a RecvDone instruction.

Given a context created by a Recv instruction, waits for the data transfer to complete and return the received data.

কমানো

See also XlaBuilder::Reduce .

Applies a reduction function to one or more arrays in parallel.

Reduce(operands..., init_values..., computation, dimensions_to_reduce)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operands Sequence of N XlaOp N arrays of types T_0,..., T_{N-1} .
init_values Sequence of N XlaOp N scalars of types T_0,..., T_{N-1} .
computation XlaComputation computation of type T_0,..., T_{N-1}, T_0, ...,T_{N-1} -> Collate(T_0,..., T_{N-1}) .
dimensions_to_reduce int64 array unordered array of dimensions to reduce.

কোথায়:

  • N is required to be greater or equal to 1.
  • The computation has to be "roughly" associative (see below).
  • All input arrays must have the same dimensions.
  • All initial values have to form an identity under computation .
  • If N = 1 , Collate(T) is T .
  • If N > 1 , Collate(T_0, ..., T_{N-1}) is a tuple of N elements of type T .

This operation reduces one or more dimensions of each input array into scalars. The number of dimensions of each returned array is number_of_dimensions(operand) - len(dimensions) . The output of the op is Collate(Q_0, ..., Q_N) where Q_i is an array of type T_i , the dimensions of which are described below.

Different backends are allowed to reassociate the reduction computation. This can lead to numerical differences, as some reduction functions like addition are not associative for floats. However, if the range of the data is limited, floating-point addition is close enough to be associative for most practical uses.

For StableHLO information see StableHLO - reduce .

উদাহরণ

When reducing across one dimension in a single 1D array with values [10, 11, 12, 13] , with reduction function f (this is computation ) then that could be computed as

f(10, f(11, f(12, f(init_value, 13)))

but there are also many other possibilities, eg

f(init_value, f(f(10, f(init_value, 11)), f(f(init_value, 12), f(init_value, 13))))

The following is a rough pseudo-code example of how reduction could be implemented, using summation as the reduction computation with an initial value of 0.

result_shape <- remove all dims in dimensions from operand_shape

# Iterate over all elements in result_shape. The number of r's here is equal
# to the number of dimensions of the result.
for r0 in range(result_shape[0]), r1 in range(result_shape[1]), ...:
  # Initialize this result element
  result[r0, r1...] <- 0

  # Iterate over all the reduction dimensions
  for d0 in range(dimensions[0]), d1 in range(dimensions[1]), ...:
    # Increment the result element with the value of the operand's element.
    # The index of the operand's element is constructed from all ri's and di's
    # in the right order (by construction ri's and di's together index over the
    # whole operand shape).
    result[r0, r1...] += operand[ri... di]

Here's an example of reducing a 2D array (matrix). The shape has 2 dimensions, dimension 0 of size 2 and dimension 1 of size 3:

Results of reducing dimensions 0 or 1 with an "add" function:

Note that both reduction results are 1D arrays. The diagram shows one as column and another as row just for visual convenience.

For a more complex example, here is a 3D array. Its number of dimensions is 3, dimension 0 of size 4, dimension 1 of size 2 and dimension 2 of size 3. For simplicity, the values 1 to 6 are replicated across dimension 0.

Similarly to the 2D example, we can reduce just one dimension. If we reduce dimension 0, for example, we get a 2-dimensional array where all values across dimension 0 were folded into a scalar:

|  4   8  12 |
| 16  20  24 |

If we reduce dimension 2, we also get a 2-dimensional array where all values across dimension 2 were folded into a scalar:

| 6  15 |
| 6  15 |
| 6  15 |
| 6  15 |

Note that the relative order between the remaining dimensions in the input is preserved in the output, but some dimensions may get assigned new numbers (since the number of dimensions changes).

We can also reduce multiple dimensions. Add-reducing dimensions 0 and 1 produces the 1D array [20, 28, 36] .

Reducing the 3D array over all its dimensions produces the scalar 84 .

Variadic Reduce

When N > 1 , reduce function application is slightly more complex, as it is applied simultaneously to all inputs. The operands are supplied to the computation in the following order:

  • Running reduced value for the first operand
  • ...
  • Running reduced value for the N'th operand
  • Input value for the first operand
  • ...
  • Input value for the N'th operand

For example, consider the following reduction function, which can be used to compute the max and the argmax of a 1-D array in parallel:

f: (Float, Int, Float, Int) -> Float, Int
f(max, argmax, value, index):
  if value >= max:
    return (value, index)
  else:
    return (max, argmax)

For 1-D Input arrays V = Float[N], K = Int[N] , and init values I_V = Float, I_K = Int , the result f_(N-1) of reducing across the only input dimension is equivalent to the following recursive application:

f_0 = f(I_V, I_K, V_0, K_0)
f_1 = f(f_0.first, f_0.second, V_1, K_1)
...
f_(N-1) = f(f_(N-2).first, f_(N-2).second, V_(N-1), K_(N-1))

Applying this reduction to an array of values, and an array of sequential indices (ie iota), will co-iterate over the arrays, and return a tuple containing the maximal value and the matching index.

ReducePrecision

See also XlaBuilder::ReducePrecision .

Models the effect of converting floating-point values to a lower-precision format (such as IEEE-FP16) and back to the original format. The number of exponent and mantissa bits in the lower-precision format can be specified arbitrarily, although all bit sizes may not be supported on all hardware implementations.

ReducePrecision(operand, exponent_bits, mantissa_bits)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp array of floating-point type T .
exponent_bits int32 number of exponent bits in lower-precision format
mantissa_bits int32 number of mantissa bits in lower-precision format

The result is an array of type T . The input values are rounded to the nearest value representable with the given number of mantissa bits (using "ties to even" semantics), and any values that exceed the range specified by the number of exponent bits are clamped to positive or negative infinity. NaN values are retained, although they may be converted to canonical NaN values.

The lower-precision format must have at least one exponent bit (in order to distinguish a zero value from an infinity, since both have a zero mantissa), and must have a non-negative number of mantissa bits. The number of exponent or mantissa bits may exceed the corresponding value for type T ; the corresponding portion of the conversion is then simply a no-op.

For StableHLO information see StableHLO - reduce_precision .

ReduceScatter

See also XlaBuilder::ReduceScatter .

ReduceScatter is a collective operation that effectively does an AllReduce and then scatters the result by splitting it into shard_count blocks along the scatter_dimension and replica i in the replica group receives the ith shard.

ReduceScatter(operand, computation, scatter_dimension, shard_count, replica_groups, channel_id, layout, use_global_device_ids)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp Array or a non-empty tuple of arrays to reduce across replicas.
computation XlaComputation Reduction computation
scatter_dimension int64 Dimension to scatter.
shard_count int64 Number of blocks to split scatter_dimension
replica_groups ReplicaGroup vector Groups between which the reductions are performed
channel_id optional ChannelHandle Optional channel ID for cross-module communication
layout optional Layout user-specified memory layout
use_global_device_ids optional bool user-specified flag
  • When operand is a tuple of arrays, the reduce-scatter is performed on each element of the tuple.
  • replica_groups is a list of replica groups between which the reduction is performed (replica id for the current replica can be retrieved using ReplicaId ). The order of replicas in each group determines the order in which the all-reduce result will be scattered. replica_groups must either be empty (in which case all replicas belong to a single group), or contain the same number of elements as the number of replicas. When there are more than one replica groups, they all must be of the same size. For example, replica_groups = {0, 2}, {1, 3} performs reduction between the replicas 0 and 2 , and 1 and 3 and then scatters the result.
  • shard_count is the size of each replica group. We need this in cases where replica_groups are empty. If replica_groups is not empty, shard_count must be equal to the size of each replica group.
  • channel_id is used for cross-module communication: only reduce-scatter operations with the same channel_id can communicate with each other.
  • layout See xla::shapes for more information on layouts.
  • use_global_device_ids is a user-specified flag. When false (default) the numbers in replica_groups are ReplicaId when true the replica_groups represent a global id of ( ReplicaID * partition_count + partition_id ). For example:
    • With 2 replicas and 4 partitions,
    • replica_groups={ {0,1,4,5},{2,3,6,7} } and use_global_device_ids=true
    • group[0] = (0,0), (0,1), (1,0), (1,1)
    • group[1] = (0,2), (0,3), (1,2), (1,3)
    • where each pair is (replica_id, partition_id).

The output shape is the input shape with the scatter_dimension made shard_count times smaller. For example, if there are two replicas and the operand has the value [1.0, 2.25] and [3.0, 5.25] respectively on the two replicas, then the output value from this op where scatter_dim is 0 will be [4.0] for the first replica and [7.5] for the second replica.

For StableHLO information see StableHLO - reduce_scatter .

ReduceScatter - Example 1 - StableHLO

An example of ReduceScatter dataflow for StableHLO

In the above example, there are 2 replicas participating in the ReduceScatter. On each replica, the operand has shape f32[2,4]. An all-reduce (sum) is performed across the replicas, producing a reduced value of shape f32[2,4] on each replica. This reduced value is then split into 2 parts along dimension 1, so each part has shape f32[2,2]. Each replica within the process group receives the part corresponding to its position in the group. As a result, the output on each replica has shape f32[2,2].

ReduceWindow

See also XlaBuilder::ReduceWindow .

Applies a reduction function to all elements in each window of a sequence of N multi-dimensional arrays, producing a single or a tuple of N multi-dimensional arrays as output. Each output array has the same number of elements as the number of valid positions of the window. A pooling layer can be expressed as a ReduceWindow . Similar to Reduce , the applied computation is always passed the init_values on the left-hand side.

ReduceWindow(operands..., init_values..., computation, window_dimensions, window_strides, padding)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operands N XlaOps A sequence of N multi-dimensional arrays of types T_0,..., T_{N-1} , each representing the base area on which the window is placed.
init_values N XlaOps The N starting values for the reduction, one for each of the N operands. See Reduce for details.
computation XlaComputation Reduction function of type T_0, ..., T_{N-1}, T_0, ..., T_{N-1} -> Collate(T_0, ..., T_{N-1}) , to apply to elements in each window of all the input operands.
window_dimensions ArraySlice<int64> array of integers for window dimension values
window_strides ArraySlice<int64> array of integers for window stride values
base_dilations ArraySlice<int64> array of integers for base dilation values
window_dilations ArraySlice<int64> array of integers for window dilation values
padding Padding padding type for window (Padding::kSame, which pads so as to have the same output shape as input if the stride is 1, or Padding::kValid, which uses no padding and "stops" the window once it no longer fits)

কোথায়:

  • N is required to be greater or equal to 1.
  • All input arrays must have the same dimensions.
  • If N = 1 , Collate(T) is T .
  • If N > 1 , Collate(T_0, ..., T_{N-1}) is a tuple of N elements of type (T0,...T{N-1}) .

For StableHLO information see StableHLO - reduce_window .

ReduceWindow - Example 1

Input is a matrix of size [4x6] and both window_dimensions and window_stride_dimensions are [2x3].

// Create a computation for the reduction (maximum).
XlaComputation max;
{
  XlaBuilder builder(client_, "max");
  auto y = builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "y");
  auto x = builder.Parameter(1, ShapeUtil::MakeShape(F32, {}), "x");
  builder.Max(y, x);
  max = builder.Build().value();
}

// Create a ReduceWindow computation with the max reduction computation.
XlaBuilder builder(client_, "reduce_window_2x3");
auto shape = ShapeUtil::MakeShape(F32, {4, 6});
auto input = builder.Parameter(0, shape, "input");
builder.ReduceWindow(
    input,
    /*init_val=*/builder.ConstantLiteral(LiteralUtil::MinValue(F32)),
    *max,
    /*window_dimensions=*/{2, 3},
    /*window_stride_dimensions=*/{2, 3},
    Padding::kValid);

Stride of 1 in a dimension specifies that the position of a window in the dimension is 1 element away from its adjacent window. In order to specify that no windows overlap with each other, window_stride_dimensions should be equal to window_dimensions. The figure below illustrates the use of two different stride values. Padding is applied to each dimension of the input and the calculations are the same as though the input came in with the dimensions it has after padding.

For a non-trivial padding example, consider computing reduce-window minimum (initial value is MAX_FLOAT ) with dimension 3 and stride 2 over the input array [10000, 1000, 100, 10, 1] . Padding kValid computes minimums over two valid windows: [10000, 1000, 100] and [100, 10, 1] , resulting in the output [100, 1] . Padding kSame first pads the array so that the shape after the reduce-window would be the same as input for stride one by adding initial elements on both sides, getting [MAX_VALUE, 10000, 1000, 100, 10, 1, MAX_VALUE] . Running reduce-window over the padded array operates on three windows [MAX_VALUE, 10000, 1000] , [1000, 100, 10] , [10, 1, MAX_VALUE] , and yields [1000, 10, 1] .

The evaluation order of the reduction function is arbitrary and may be non-deterministic. Therefore, the reduction function should not be overly sensitive to reassociation. See the discussion about associativity in the context of Reduce for more details.

ReduceWindow - Example 2 - StableHLO

An example of ReduceWindow dataflow for StableHLO

In the above example:

Input) The operand has an input shape of S32[3,2]. With a values of [[1,2],[3,4],[5,6]]

Step 1) Base dilation with factor 2 along the row dimension inserts holes between each row of the operand. Padding of 2 rows at the top and 1 row at the bottom is applied after dilation. As a result, the tensor becomes taller.

Step 2) A window of shape [2,1] is defined, with window dilation [3,1]. This means each window selects two elements from the same column, but the second element is taken three rows below the first rather than directly beneath it.

Step 3) The windows are then slid across the operand with stride [4,1]. This causes the window to move down four rows at a time, while shifting one column at a time horizontally. Padding cells are filled with the init_value (in this case init_value = 0 ). Values 'falling into' dilation cells are ignored. Because of the stride and padding, some windows overlap only zeros and holes, while others overlap real input values.

Step 4) Within each window, the elements are combined using the reduction function (a, b) → a + b, starting from an initial value of 0. The top two windows see only padding and holes, so their results are 0. The bottom windows capture the values 3 and 4 from the input and return those as results.

Results) The final output has shape S32[2,2], with values: [[0,0],[3,4]]

Rem

See also XlaBuilder::Rem .

Performs element-wise remainder of dividend lhs and divisor rhs .

The sign of the result is taken from the dividend, and the absolute value of the result is always less than the divisor's absolute value.

Rem(lhs, rhs)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Rem:

Rem(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - remainder .

ReplicaId

See also XlaBuilder::ReplicaId .

Returns the unique ID (U32 scalar) of the replica.

ReplicaId()

The unique ID of each replica is an unsigned integer in the interval [0, N) , where N is the number of replicas. Since all the replicas are running the same program, a ReplicaId() call in the program will return a different value on each replica.

For StableHLO information see StableHLO - replica_id .

Reshape

See also XlaBuilder::Reshape . and the Collapse operation.

Reshapes the dimensions of an array into a new configuration.

Reshape(operand, dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp array of type T
dimensions int64 vector vector of sizes of new dimensions

Conceptually, reshape first flattens an array into a one-dimensional vector of data values, and then refines this vector into a new shape. The input arguments are an arbitrary array of type T, a compile-time-constant vector of dimension indices, and a compile-time-constant vector of dimension sizes for the result. The dimensions vector determines the size of the output array. The value at index 0 in dimensions is the size of dimension 0, the value at index 1 is the size of dimension 1, and so on. The product of the dimensions dimensions must equal the product of the operand's dimension sizes. When refining the collapsed array into the multidimensional array defined by dimensions , the dimensions in dimensions are ordered from slowest varying (most major) and to fastest varying (most minor).

For example, let v be an array of 24 elements:

let v = f32[4x2x3] { { {10, 11, 12}, {15, 16, 17} },
                    { {20, 21, 22}, {25, 26, 27} },
                    { {30, 31, 32}, {35, 36, 37} },
                    { {40, 41, 42}, {45, 46, 47} } };

let v012_24 = Reshape(v, {24});
then v012_24 == f32[24] {10, 11, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27,
                         30, 31, 32, 35, 36, 37, 40, 41, 42, 45, 46, 47};

let v012_83 = Reshape(v, {8,3});
then v012_83 == f32[8x3] { {10, 11, 12}, {15, 16, 17},
                          {20, 21, 22}, {25, 26, 27},
                          {30, 31, 32}, {35, 36, 37},
                          {40, 41, 42}, {45, 46, 47} };

As a special case, reshape can transform a single-element array to a scalar and vice versa. For example,

Reshape(f32[1x1] { {5} }, {}) == 5;
Reshape(5, {1,1}) == f32[1x1] { {5} };

For StableHLO information see StableHLO - reshape .

Reshape (explicit)

See also XlaBuilder::Reshape .

Reshape(shape, operand)

Reshape op that uses an explicit target shape.

যুক্তি আদর্শ শব্দার্থবিদ্যা
shape Shape Output shape of type T
operand XlaOp array of type T

Rev (reverse)

See also XlaBuilder::Rev .

Rev(operand, dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp array of type T
dimensions ArraySlice<int64> dimensions to reverse

Reverses the order of elements in the operand array along the specified dimensions , generating an output array of the same shape. Each element of the operand array at a multidimensional index is stored into the output array at a transformed index. The multidimensional index is transformed by reversing the index in each dimension to be reversed (ie, if a dimension of size N is one of the reversing dimensions, its index i is transformed into N - 1 - i).

One use for the Rev operation is to reverse the convolution weight array along the two window dimensions during the gradient computation in neural networks.

For StableHLO information see StableHLO - reverse .

RngNormal

See also XlaBuilder::RngNormal .

Constructs an output of a given shape with random numbers generated following the \(N(\mu, \sigma)\) normal distribution. The parameters \(\mu\) এবং \(\sigma\), and output shape have to have a floating point elemental type. The parameters furthermore have to be scalar valued.

RngNormal(mu, sigma, shape)

যুক্তি আদর্শ শব্দার্থবিদ্যা
mu XlaOp Scalar of type T specifying mean of generated numbers
sigma XlaOp Scalar of type T specifying standard deviation of generated
shape Shape Output shape of type T

For StableHLO information see StableHLO - rng .

RngUniform

See also XlaBuilder::RngUniform .

Constructs an output of a given shape with random numbers generated following the uniform distribution over the interval \([a,b)\). The parameters and output element type have to be a boolean type, an integral type or a floating point types, and the types have to be consistent. The CPU and GPU backends currently only support F64, F32, F16, BF16, S64, U64, S32 and U32. Furthermore, the parameters need to be scalar valued. If \(b <= a\) the result is implementation-defined.

RngUniform(a, b, shape)

যুক্তি আদর্শ শব্দার্থবিদ্যা
a XlaOp Scalar of type T specifying lower limit of interval
b XlaOp Scalar of type T specifying upper limit of interval
shape Shape Output shape of type T

For StableHLO information see StableHLO - rng .

RngBitGenerator

See also XlaBuilder::RngBitGenerator .

Generates an output with a given shape filled with uniform random bits using the specified algorithm (or backend default) and returns an updated state (with the same shape as initial state) and the generated random data.

Initial state is the initial state of the current random number generation. It and the required shape and valid values are dependent on the algorithm used.

The output is guaranteed to be a deterministic function of the initial state but it is not guaranteed to be deterministic between backends and different compiler versions.

RngBitGenerator(algorithm, initial_state, shape)

যুক্তি আদর্শ শব্দার্থবিদ্যা
algorithm RandomAlgorithm PRNG algorithm to be used.
initial_state XlaOp Initial state for the PRNG algorithm.
shape Shape Output shape for generated data.

Available values for algorithm :

For StableHLO information see StableHLO - rng_bit_generator .

RngGetAndUpdateState

See also HloInstruction::CreateRngGetAndUpdateState .

The API of the various Rng operations are internally decomposed into HLO instructions including RngGetAndUpdateState .

RngGetAndUpdateState serves as a primitive in HLO. This op may appear in HLO dumps, but it is not intended to be constructed manually by end users.

গোলাকার

See also XlaBuilder::Round .

Element-wise rounding, ties away from zero.

Round(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

RoundNearestAfz

See also XlaBuilder::RoundNearestAfz .

Performs element-wise rounding towards the nearest integer, breaking ties away from zero.

RoundNearestAfz(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

For StableHLO information see StableHLO - round_nearest_afz .

RoundNearestEven

See also XlaBuilder::RoundNearestEven .

Element-wise rounding, ties to the nearest even.

RoundNearestEven(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

For StableHLO information see StableHLO - round_nearest_even .

Rsqrt

See also XlaBuilder::Rsqrt .

Element-wise reciprocal of square root operation x -> 1.0 / sqrt(x) .

Rsqrt(operand)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function

Rsqrt also supports the optional result_accuracy argument:

Rsqrt(operand, result_accuracy)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

For StableHLO information see StableHLO - rsqrt .

বিক্ষিপ্ত

See also XlaBuilder::Scatter .

The XLA scatter operation generates a sequence of results which are the values of the input array operands , with several slices (at indices specified by scatter_indices ) updated with the sequence of values in updates using update_computation .

Scatter(operands..., scatter_indices, updates..., update_computation, dimension_numbers, indices_are_sorted, unique_indices)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operands Sequence of N XlaOp N arrays of types T_0, ..., T_N to be scattered into.
scatter_indices XlaOp Array containing the starting indices of the slices that must be scattered to.
updates Sequence of N XlaOp N arrays of types T_0, ..., T_N . updates[i] contains the values that must be used for scattering operands[i] .
update_computation XlaComputation Computation to be used for combining the existing values in the input array and the updates during scatter. This computation should be of type T_0, ..., T_N, T_0, ..., T_N -> Collate(T_0, ..., T_N) .
index_vector_dim int64 The dimension in scatter_indices that contains the starting indices.
update_window_dims ArraySlice<int64> The set of dimensions in updates shape that are window dimensions .
inserted_window_dims ArraySlice<int64> The set of window dimensions that must be inserted into updates shape.
scatter_dims_to_operand_dims ArraySlice<int64> A dimensions map from the scatter indices to the operand index space. This array is interpreted as mapping i to scatter_dims_to_operand_dims[i] . It has to be one-to-one and total.
dimension_number ScatterDimensionNumbers Dimension numbers for scatter operation
indices_are_sorted bool Whether the indices are guaranteed to be sorted by the caller.
unique_indices bool Whether the indices are guaranteed to be unique by the caller.

কোথায়:

  • N is required to be greater or equal to 1.
  • operands [ 0 ], ..., operands [ N-1 ] must all have the same dimensions.
  • updates [ 0 ], ..., updates [ N-1 ] must all have the same dimensions.
  • If N = 1 , Collate(T) is T .
  • If N > 1 , Collate(T_0, ..., T_N) is a tuple of N elements of type T .

If index_vector_dim is equal to scatter_indices.rank we implicitly consider scatter_indices to have a trailing 1 dimension.

We define update_scatter_dims of type ArraySlice<int64> as the set of dimensions in updates shape that are not in update_window_dims , in ascending order.

The arguments of scatter should follow these constraints:

  • Each updates array must have update_window_dims.size + scatter_indices.rank - 1 dimensions.

  • Bounds of dimension i in each updates array must conform to the following:

    • If i is present in update_window_dims (ie equal to update_window_dims [ k ] for some k ), then the bound of dimension i in updates must not exceed the corresponding bound of operand after accounting for the inserted_window_dims (ie adjusted_window_bounds [ k ], where adjusted_window_bounds contains the bounds of operand with the bounds at indices inserted_window_dims removed).
    • If i is present in update_scatter_dims (ie equal to update_scatter_dims [ k ] for some k ), then the bound of dimension i in updates must be equal to the corresponding bound of scatter_indices , skipping index_vector_dim (ie scatter_indices.shape.dims [ k ], if k < index_vector_dim and scatter_indices.shape.dims [ k+1 ] otherwise).
  • update_window_dims must be in ascending order, not have any repeating dimension numbers, and be in the range [0, updates.rank) .

  • inserted_window_dims must be in ascending order, not have any repeating dimension numbers, and be in the range [0, operand.rank) .

  • operand.rank must equal the sum of update_window_dims.size and inserted_window_dims.size .

  • scatter_dims_to_operand_dims.size must be equal to scatter_indices.shape.dims [ index_vector_dim ], and its values must be in the range [0, operand.rank) .

For a given index U in each updates array, the corresponding index I in the corresponding operands array into which this update has to be applied is computed as follows:

  1. Let G = { U [ k ] for k in update_scatter_dims }. Use G to look up an index vector S in the scatter_indices array such that S [ i ] = scatter_indices [Combine( G , i )] where Combine(A, b) inserts b at positions index_vector_dim into A.
  2. Create an index S in into operand using S by scattering S using the scatter_dims_to_operand_dims map. More formally:
    1. S in [ scatter_dims_to_operand_dims [ k ]] = S [ k ] if k < scatter_dims_to_operand_dims.size .
    2. S in [ _ ] = 0 otherwise.
  3. Create an index W in into each operands array by scattering the indices at update_window_dims in U according to inserted_window_dims . More formally:
    1. W in [ window_dims_to_operand_dims ( k )] = U [ k ] if k is in update_window_dims , where window_dims_to_operand_dims is the monotonic function with domain [ 0 , update_window_dims.size ) and range [ 0 , operand.rank ) \ inserted_window_dims . (For example, if update_window_dims.size is 4 , operand.rank is 6 , and inserted_window_dims is { 0 , 2 } then window_dims_to_operand_dims is { 01 , 13 , 24 , 35 }).
    2. W in [ _ ] = 0 otherwise.
  4. I is W in + S in where + is element-wise addition.

In summary, the scatter operation can be defined as follows.

  • Initialize output with operands , ie for all indices J , for all indices O in the operands [ J ] array:
    output [ J ][ O ] = operands [ J ][ O ]
  • For every index U in the updates [ J ] array and the corresponding index O in the operand [ J ] array, if O is a valid index for output :
    (output [ 0 ][ O ], ..., output [ N-1 ][ O ]) = update_computation ( output [ 0 ][ O ], ..., , output [ N-1 ][ O ], updates [ 0 ][ U ], ..., updates [ N-1 ][ U ])

The order in which updates are applied is non-deterministic. So, when multiple indices in updates refer to the same index in operands , the corresponding value in output will be non-deterministic.

Note that the first parameter that is passed into the update_computation will always be the current value from the output array and the second parameter will always be the value from the updates array. This is important specifically for cases when the update_computation is not commutative .

If indices_are_sorted is set to true then XLA can assume that scatter_indices are sorted (in ascending order, after scattering its values according to scatter_dims_to_operand_dims ) by the user. If they are not then the semantics are implementation defined.

If unique_indices is set to true then XLA can assume that all elements scattered to are unique. So XLA could use non-atomic operations. If unique_indices is set to true and the indices being scattered to are not unique then the semantics is implementation defined.

Informally, the scatter op can be viewed as an inverse of the gather op, ie the scatter op updates the elements in the input that are extracted by the corresponding gather op.

For a detailed informal description and examples, refer to the "Informal Description" section under Gather .

For StableHLO information see StableHLO - scatter .

Scatter - Example 1 - StableHLO

An example of Scatter dataflow for StableHLO

In the above image, each row of the table is an example of one update index example. Let's review stepwise from left(Update Index) to right(Result Index):

Input) input has shape S32[2,3,4,2]. scatter_indices have shape S64[2,2,3,2]. updates have shape S32[2,2,3,1,2].

Update Index) As part of the input we are given update_window_dims:[3,4] . This tell us that updates 's dim 3 and dim 4 are window dimensions, highlighted in yellow. This allows us to derive that update_scatter_dims = [0,1,2].

Update Scatter Index) Shows us the extracted updated_scatter_dims for each. (The non-yellow of column Update Index)

Start Index) Looking at the scatter_indices tensor image we can see that our values from the previous step (Update scatter Index), give us the location of the start index. From index_vector_dim we are also told the dimension of the starting_indices that contains the starting indices, which for scatter_indices is dim 3 with a size 2.

Full Start Index) scatter_dims_to_operand_dims = [2,1] tells us the first element of the index vector goes to operand dim 2. The second element of the index vector goes to operand dim 1. The remaining operand dimensions are filled with 0.

Full Batching Index) We can see the purple highlighted area is shown in this column(full batching index), the update scatter index column, and update index column.

Full Window Index) Computed from the update_window_dimensions [3,4].

Result Index) The addition of Full Start Index, Full Batching Index, and Full Window Index in the operand tensor. Notice the green highlighted regions correspond to the operand figure as well. The last row is skipped because it falls outside of operand tensor.

নির্বাচন করুন

See also XlaBuilder::Select .

Constructs an output array from elements of two input arrays, based on the values of a predicate array.

Select(pred, on_true, on_false)

যুক্তি আদর্শ শব্দার্থবিদ্যা
pred XlaOp array of type PRED
on_true XlaOp array of type T
on_false XlaOp array of type T

The arrays on_true and on_false must have the same shape. This is also the shape of the output array. The array pred must have the same dimensionality as on_true and on_false , with the PRED element type.

For each element P of pred , the corresponding element of the output array is taken from on_true if the value of P is true , and from on_false if the value of P is false . As a restricted form of broadcasting , pred can be a scalar of type PRED . In this case, the output array is taken wholly from on_true if pred is true , and from on_false if pred is false .

Example with non-scalar pred :

let pred: PRED[4] = {true, false, false, true};
let v1: s32[4] = {1, 2, 3, 4};
let v2: s32[4] = {100, 200, 300, 400};
==>
Select(pred, v1, v2) = s32[4]{1, 200, 300, 4};

Example with scalar pred :

let pred: PRED = true;
let v1: s32[4] = {1, 2, 3, 4};
let v2: s32[4] = {100, 200, 300, 400};
==>
Select(pred, v1, v2) = s32[4]{1, 2, 3, 4};

Selections between tuples are supported. Tuples are considered to be scalar types for this purpose. If on_true and on_false are tuples (which must have the same shape!) then pred has to be a scalar of type PRED .

For StableHLO information see StableHLO - select

SelectAndScatter

See also XlaBuilder::SelectAndScatter .

This operation can be considered as a composite operation that first computes ReduceWindow on the operand array to select an element from each window, and then scatters the source array to the indices of the selected elements to construct an output array with the same shape as the operand array. The binary select function is used to select an element from each window by applying it across each window, and it is called with the property that the first parameter's index vector is lexicographically less than the second parameter's index vector. The select function returns true if the first parameter is selected and returns false if the second parameter is selected, and the function must hold transitivity (ie, if select(a, b) and select(b, c) are true , then select(a, c) is also true ) so that the selected element does not depend on the order of the elements traversed for a given window.

The function scatter is applied at each selected index in the output array. It takes two scalar parameters:

  1. Current value at the selected index in the output array
  2. The scatter value from source that applies to the selected index

It combines the two parameters and returns a scalar value that's used to update the value at the selected index in the output array. Initially, all indices of the output array are set to init_value .

The output array has the same shape as the operand array and the source array must have the same shape as the result of applying a ReduceWindow operation on the operand array. SelectAndScatter can be used to backpropagate the gradient values for a pooling layer in a neural network.

SelectAndScatter(operand, select, window_dimensions, window_strides, padding, source, init_value, scatter)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp array of type T over which the windows slide
select XlaComputation binary computation of type T, T -> PRED , to apply to all elements in each window; returns true if the first parameter is selected and returns false if the second parameter is selected
window_dimensions ArraySlice<int64> array of integers for window dimension values
window_strides ArraySlice<int64> array of integers for window stride values
padding Padding padding type for window (Padding::kSame or Padding::kValid)
source XlaOp array of type T with the values to scatter
init_value XlaOp scalar value of type T for the initial value of the output array
scatter XlaComputation binary computation of type T, T -> T , to apply each scatter source element with its destination element

The figure below shows examples of using SelectAndScatter , with the select function computing the maximal value among its parameters. Note that when the windows overlap, as in the figure (2) below, an index of the operand array may be selected multiple times by different windows. In the figure, the element of value 9 is selected by both of the top windows (blue and red) and the binary addition scatter function produces the output element of value 8 (2 + 6).

The evaluation order of the scatter function is arbitrary and may be non-deterministic. Therefore, the scatter function should not be overly sensitive to reassociation. See the discussion about associativity in the context of Reduce for more details.

For StableHLO information see StableHLO - select_and_scatter .

পাঠান

See also XlaBuilder::Send .

Send , SendWithTokens , and SendToHost are operations that serve as communication primitives in HLO. These ops typically appear in HLO dumps as part of low-level input/output or cross-device transfer, but they are not intended to be constructed manually by end users.

Send(operand, handle)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp data to send (array of type T)
handle ChannelHandle unique identifier for each send/recv pair

Sends the given operand data to a Recv instruction in another computation that shares the same channel handle. Does not return any data.

Similar to the Recv operation, the client API of Send operation represents synchronous communication, and is internally decomposed into 2 HLO instructions ( Send and SendDone ) to enable asynchronous data transfers. See also HloInstruction::CreateSend and HloInstruction::CreateSendDone .

Send(HloInstruction operand, int64 channel_id)

Initiates an asynchronous transfer of the operand to the resources allocated by the Recv instruction with the same channel id. Returns a context, which is used by a following SendDone instruction to wait for the completion of the data transfer. The context is a tuple of {operand (shape), request identifier (U32)} and it can only be used by a SendDone instruction.

For StableHLO information see StableHLO - send .

SendDone

See also HloInstruction::CreateSendDone .

SendDone(HloInstruction context)

Given a context created by a Send instruction, waits for the data transfer to complete. The instruction does not return any data.

Scheduling of channel instructions

The execution order of the 4 instructions for each channel ( Recv , RecvDone , Send , SendDone ) is as below.

  • Recv happens before Send
  • Send happens before RecvDone
  • Recv happens before RecvDone
  • Send happens before SendDone

When the backend compilers generate a linear schedule for each computation that communicates via channel instructions, there must not be cycles across the computations. For example, below schedules lead to deadlocks.

SetDimensionSize

See also XlaBuilder::SetDimensionSize .

Sets the dynamic size of XlaOp's given dimension. The operand must be array shaped.

SetDimensionSize(operand, val, dimension)

যুক্তি আদর্শ শব্দার্থবিদ্যা
operand XlaOp n dimensional input array.
val XlaOp int32 representing the runtime dynamic size.
dimension int64 A value in the interval [0, n) that specifies the dimension.

Pass through the operand as result, with dynamic dimension tracked by the compiler.

Padded values will be ignored by downstream reduction ops.

let v: f32[10] = f32[10]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
let five: s32 = 5;
let six: s32 = 6;

// Setting dynamic dimension size doesn't change the upper bound of the static
// shape.
let padded_v_five: f32[10] = set_dimension_size(v, five, /*dimension=*/0);
let padded_v_six: f32[10] = set_dimension_size(v, six, /*dimension=*/0);

// sum == 1 + 2 + 3 + 4 + 5
let sum:f32[] = reduce_sum(padded_v_five);
// product == 1 * 2 * 3 * 4 * 5
let product:f32[] = reduce_product(padded_v_five);

// Changing padding size will yield different result.
// sum == 1 + 2 + 3 + 4 + 5 + 6
let sum:f32[] = reduce_sum(padded_v_six);

ShiftLeft

See also XlaBuilder::ShiftLeft .

Performs element-wise left-shift operation on lhs by rhs number of bits.

ShiftLeft(lhs, rhs)

যুক্তি আদর্শ Semantics
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for ShiftLeft:

ShiftLeft(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ শব্দার্থবিদ্যা
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - shift_left .

ShiftRightArithmetic

See also XlaBuilder::ShiftRightArithmetic .

Performs element-wise arithmetic right-shift operation on lhs by rhs number of bits.

ShiftRightArithmetic(lhs, rhs)

যুক্তি আদর্শ Semantics
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for ShiftRightArithmetic:

ShiftRightArithmetic(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ Semantics
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - shift_right_arithmetic .

ShiftRightLogical

See also XlaBuilder::ShiftRightLogical .

Performs element-wise logical right-shift operation on lhs by rhs number of bits.

ShiftRightLogical(lhs, rhs)

যুক্তি আদর্শ Semantics
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for ShiftRightLogical:

ShiftRightLogical(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ Semantics
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - shift_right_logical .

চিহ্ন

See also XlaBuilder::Sign .

Sign(operand) Element-wise sign operation x -> sgn(x) where

\[\text{sgn}(x) = \begin{cases} -1 & x < 0\\ -0 & x = -0\\ NaN & x = NaN\\ +0 & x = +0\\ 1 & x > 0 \end{cases}\]

using the comparison operator of the element type of operand .

Sign(operand)

যুক্তি আদর্শ Semantics
operand XlaOp The operand to the function

For StableHLO information see StableHLO - sign .

পাপ

Sin(operand) Element-wise sine x -> sin(x) .

See also XlaBuilder::Sin .

Sin(operand)

যুক্তি আদর্শ Semantics
operand XlaOp The operand to the function

Sin also supports the optional result_accuracy argument:

Sin(operand, result_accuracy)

যুক্তি আদর্শ Semantics
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

For StableHLO information see StableHLO - sine .

স্লাইস

See also XlaBuilder::Slice .

Slicing extracts a sub-array from the input array. The sub-array has the same number of dimensions as the input and contains the values inside a bounding box within the input array where the dimensions and indices of the bounding box are given as arguments to the slice operation.

Slice(operand, start_indices, limit_indices, strides)

যুক্তি আদর্শ Semantics
operand XlaOp N dimensional array of type T
start_indices ArraySlice<int64> List of N integers containing the starting indices of the slice for each dimension. Values must be greater than or equal to zero.
limit_indices ArraySlice<int64> List of N integers containing the ending indices (exclusive) for the slice for each dimension. Each value must be greater than or equal to the respective start_indices value for the dimension and less than or equal to the size of the dimension.
strides ArraySlice<int64> List of N integers that decides the input stride of the slice. The slice picks every strides[d] element in dimension d .

1-dimensional example:

let a = {0.0, 1.0, 2.0, 3.0, 4.0}
Slice(a, {2}, {4})
// Result: {2.0, 3.0}

2-dimensional example:

let b =
 { {0.0,  1.0,  2.0},
   {3.0,  4.0,  5.0},
   {6.0,  7.0,  8.0},
   {9.0, 10.0, 11.0} }

Slice(b, {2, 1}, {4, 3})
// Result:
//   { { 7.0,  8.0},
//     {10.0, 11.0} }

For StableHLO information see StableHLO - slice .

সাজান

See also XlaBuilder::Sort .

Sort(operands, comparator, dimension, is_stable)

যুক্তি আদর্শ Semantics
operands ArraySlice<XlaOp> The operands to sort.
comparator XlaComputation The comparator computation to use.
dimension int64 The dimension along which to sort.
is_stable bool Whether stable sorting should be used.

If only one operand is provided:

  • If the operand is a 1-dimensional tensor (an array), the result is a sorted array. If you want to sort the array into ascending order, the comparator should perform a less-than comparison. Formally, after the array is sorted, it holds for all index positions i, j with i < j that either comparator(value[i], value[j]) = comparator(value[j], value[i]) = false or comparator(value[i], value[j]) = true .

  • If the operand has higher number of dimensions, the operand is sorted along the provided dimension. For example, for a 2-dimensional tensor (a matrix), a dimension value of 0 will independently sort every column, and a dimension value of 1 will independently sort each row. If no dimension number is provided, then the last dimension is chosen by default. For the dimension which is sorted, the same sorting order applies as in the 1-dimensional case.

If n > 1 operands are provided:

  • All n operands must be tensors with the same dimensions. The element types of the tensors may be different.

  • All operands are sorted together, not individually. Conceptually the operands are treated as a tuple. When checking whether the elements of each operand at index positions i and j need to be swapped, the comparator is called with 2 * n scalar parameters, where parameter 2 * k corresponds to the value at position i from the k-th operand, and parameter 2 * k + 1 corresponds to the value at position j from the k-th operand. Usually, the comparator would thus compare parameters 2 * k and 2 * k + 1 with each other and possibly use other parameter pairs as tie breakers.

  • The result is a tuple that consists of the operands in sorted order (along the provided dimension, as above). The i-th operand of the tuple corresponds to the i-th operand of Sort.

For example, if there are three operands operand0 = [3, 1] , operand1 = [42, 50] , operand2 = [-3.0, 1.1] , and the comparator compares only the values of operand0 with less-than, then the output of the sort is the tuple ([1, 3], [50, 42], [1.1, -3.0]) .

If is_stable is set to true, the sort is guaranteed to be stable, that is, if there are elements which are considered to be equal by the comparator, the relative order of the equal values is preserved. Two elements e1 and e2 are equal if and only if comparator(e1, e2) = comparator(e2, e1) = false . By default, is_stable is set to false.

For StableHLO information see StableHLO - sort .

Sqrt

See also XlaBuilder::Sqrt .

Element-wise square root operation x -> sqrt(x) .

Sqrt(operand)

Arguments আদর্শ Semantics
operand XlaOp The operand to the function

Sqrt also supports the optional result_accuracy argument:

Sqrt(operand, result_accuracy)

যুক্তি আদর্শ Semantics
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

For StableHLO information see StableHLO - sqrt .

উপ

See also XlaBuilder::Sub .

Performs element-wise subtraction of lhs and rhs .

Sub(lhs, rhs)

যুক্তি আদর্শ Semantics
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Sub:

Sub(lhs,rhs, broadcast_dimensions)

যুক্তি আদর্শ Semantics
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - subtract .

ট্যান

See also XlaBuilder::Tan .

Element-wise tangent x -> tan(x) .

Tan(operand)

যুক্তি আদর্শ Semantics
operand XlaOp The operand to the function

Tan also supports the optional result_accuracy argument:

Tan(operand, result_accuracy)

Arguments আদর্শ Semantics
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

For StableHLO information see StableHLO - tan .

Tanh

See also XlaBuilder::Tanh .

Element-wise hyperbolic tangent x -> tanh(x) .

Tanh(operand)

Arguments আদর্শ Semantics
operand XlaOp The operand to the function

Tanh also supports the optional result_accuracy argument:

Tanh(operand, result_accuracy)

Arguments আদর্শ Semantics
operand XlaOp The operand to the function
result_accuracy optional ResultAccuracy The types of accuracy the user can request for unary ops with multiple implementations

For more information on result_accuracy see Result Accuracy .

For StableHLO information see StableHLO - tanh .

TopK

See also XlaBuilder::TopK .

TopK finds the values and indices of the k largest or smallest elements for the last dimension of the given tensor.

TopK(operand, k, largest)

Arguments আদর্শ Semantics
operand XlaOp The tensor from which to extract the top k elements. The tensor must have greater or equal to one dimensions. The size of the last dimension of the tensor must be greater or equal to k .
k int64 The number of elements to extract.
largest bool Whether to extract the largest or smallest k elements.

For a 1-dimensional input tensor (an array), finds the k largest or smallest entries in the array and outputs a tuple of two arrays (values, indices) . Thus values[j] is the j -th largest/smallest entry in operand , and its index is indices[j] .

For an input tensor with more than 1 dimension, computes the top k entries along the last dimension, preserving all other dimensions (rows) in the output. Thus, for an operand of shape [A, B, ..., P, Q] where Q >= k the output is a tuple (values, indices) where:

values.shape = indices.shape = [A, B, ..., P, k]

If two elements within a row are equal, the lower-index element appears first.

Transpose

See also the tf.reshape operation.

Transpose(operand, permutation)

Arguments আদর্শ Semantics
operand XlaOp The operand to transpose.
permutation ArraySlice<int64> How to permute the dimensions.

Permutes the operand dimensions with the given permutation, so ∀ i . 0 ≤ i < number of dimensions ⇒ input_dimensions[permutation[i]] = output_dimensions[i] .

This is the same as Reshape(operand, permutation, Permute(permutation, operand.shape.dimensions)).

For StableHLO information see StableHLO - transpose .

TriangularSolve

See also XlaBuilder::TriangularSolve .

Solves systems of linear equations with lower or upper triangular coefficient matrices by forward- or back-substitution. Broadcasting along leading dimensions, this routine solves one of the matrix systems op(a) * x = b , or x * op(a) = b , for the variable x , given a and b , where op(a) is either op(a) = a , or op(a) = Transpose(a) , or op(a) = Conj(Transpose(a)) .

TriangularSolve(a, b, left_side, lower, unit_diagonal, transpose_a)

Arguments আদর্শ Semantics
a XlaOp a > 2 dimensional array of a complex or floating-point type with shape [..., M, M] .
b XlaOp a > 2 dimensional array of the same type with shape [..., M, K] if left_side is true, [..., K, M] otherwise.
left_side bool indicates whether to solve a system of the form op(a) * x = b ( true ) or x * op(a) = b ( false ).
lower bool whether to use the upper or lower triangle of a .
unit_diagonal bool if true , the diagonal elements of a are assumed to be 1 and not accessed.
transpose_a Transpose whether to use a as is, transpose it or take its conjugate transpose.

Input data is read only from the lower/upper triangle of a , depending on the value of lower . Values from the other triangle are ignored. Output data is returned in the same triangle; the values in the other triangle are implementation-defined and may be anything.

If the number of dimensions of a and b are greater than 2, they are treated as batches of matrices, where all except the minor 2 dimensions are batch dimensions. a and b must have equal batch dimensions.

For StableHLO information see StableHLO - triangular_solve .

Tuple

See also XlaBuilder::Tuple .

A tuple containing a variable number of data handles, each of which has its own shape.

Tuple(elements)

Arguments আদর্শ Semantics
elements vector of XlaOp N array of type T

This is analogous to std::tuple in C++. Conceptually:

let v: f32[10] = f32[10]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
let s: s32 = 5;
let t: (f32[10], s32) = tuple(v, s);

Tuples can be deconstructed (accessed) via the GetTupleElement operation.

For StableHLO information see StableHLO - tuple .

যখন

See also XlaBuilder::While .

While(condition, body, init)

Arguments আদর্শ Semantics
condition XlaComputation XlaComputation of type T -> PRED which defines the termination condition of the loop.
body XlaComputation XlaComputation of type T -> T which defines the body of the loop.
init T Initial value for the parameter of condition and body .

Sequentially executes the body until the condition fails. This is similar to a typical while loop in many other languages except for the differences and restrictions listed below.

  • A While node returns a value of type T , which is the result from the last execution of the body .
  • The shape of the type T is statically determined and must be the same across all iterations.

The T parameters of the computations are initialized with the init value in the first iteration and are automatically updated to the new result from body in each subsequent iteration.

One main use case of the While node is to implement the repeated execution of training in neural networks. Simplified pseudocode is shown below with a graph that represents the computation. The code can be found in while_test.cc . The type T in this example is a Tuple consisting of an int32 for the iteration count and a vector[10] for the accumulator. For 1000 iterations, the loop keeps adding a constant vector to the accumulator.

// Pseudocode for the computation.
init = {0, zero_vector[10]} // Tuple of int32 and float[10].
result = init;
while (result(0) < 1000) {
  iteration = result(0) + 1;
  new_vector = result(1) + constant_vector[10];
  result = {iteration, new_vector};
}

For StableHLO information see StableHLO - while .

Xor

See also XlaBuilder::Xor .

Performs element-wise XOR of lhs and rhs .

Xor(lhs, rhs)

Arguments আদর্শ Semantics
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.

An alternative variant with different-dimensional broadcasting support exists for Xor:

Xor(lhs,rhs, broadcast_dimensions)

Arguments আদর্শ Semantics
lhs XlaOp Left-hand-side operand: array of type T
rhs XlaOp Left-hand-side operand: array of type T
broadcast_dimension ArraySlice Which dimension in the target shape each dimension of the operand shape corresponds to

This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).

The additional broadcast_dimensions operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .

For StableHLO information see StableHLO - xor .